Hall algebra




In terms of 2-Segal spaces

Given a 2-Segal space X X_\bullet such that the spans

X 1×X 1( 2, 0)X 2 1X 1 X_1 \times X_1 \stackrel{(\partial_2, \partial_0)}{\leftarrow} X_2 \stackrel{\partial_1}{\rightarrow} X_1


ptX 0s 0X 1 pt \leftarrow X_0 \stackrel{s_0}{\to} X_1

admit pull-push integral transforms in some given cohomology theory hh. Then the Hall algebra of XX with coefficients in HH is the associative algebra structure on h(X 1)h(X_1) induced by these pull-push operations.

This is the perspective of Dyckerhoff-Kapranov 12, def. 8.1.8.

Motivic Hall algebra

Specifically for a given algebraic stack XX and with

XX (2)X×X X \leftarrow X^{(2)} \rightarrow X\times X

denoting the moduli stack of 2-flags of coherent sheaves on XX, then the corresponding pull-push multiplication on the motivic Grothendieck ring K(X)K(X) is called the motivic Hall algebra of XX (due to Dominic Joyce reviewed e.g. in Bridgeland 10, 4.2). Discussion of motivic Hall algebras of Calabi-Yau 3-folds is in (Kontsevich-Soibelman 08).

In terms of constructible sheaves

The Hall algebra of an abelian category is the Grothendieck group of constructible sheaves/perverse sheaves on the moduli stack of objects in the category. The Hall algebra is an algebra because the constructible derived category of the moduli stack of objects in an abelian category is monoidal in a canonical way.

This perspective is taken from (Webster11). See there for more details.


A good survey is given in

The characterization via 2-Segal spaces is due to

Canonical references on Hall algebras include the following.

Motivic Hall algebras:

Last revised on September 30, 2018 at 03:07:36. See the history of this page for a list of all contributions to it.