nLab
L-function
Redirected from "L-functions".
Contents
Contents
1. Idea
L L -functions are certain meromorphic functions generalizing the Riemann zeta function . They are typically defined on parts of the complex plane by a power series expressions – called the L L -series – which converges in that region, and then meromorphically extended to all of the complex plane by analytic continuation .
The most canonically defined class of examples of L-functions are the Artin L-functions defined for any Galois representation σ : Gal ⟶ GL n ( ℂ ) \sigma \colon Gal \longrightarrow GL_n(\mathbb{C}) as the Euler products of, essentially, the characteristic polynomials of all the Frobenius homomorphisms acting via σ \sigma .
Another common example of an L-function comes from modular forms . If we have a cusp form f f of weight k k , with Fourier expansion
f ( z ) = ∑ n = 1 ∞ a n e 2 π i n z f(z)=\sum_{n=1}^{\infty}a_{n}e^{2\pi i n z}
the associated L-function L f ( s ) L_{f}(s) is given by
L f ( s ) = ∑ n ∞ a n n − s . L_{f}(s)=\sum_{n}^{\infty}a_{n}n^{-s}.
The L-function L f ( s ) L_{f}(s) may also be obtained as the Mellin transform of f f . This is an example of an automorphic L-function , which more generally is not as easy to construct.
Most other kinds of L-functions are such as to reproduces these Artin L-functions from more “arithmetic” data:
for 1-dimensional Galois representations σ \sigma (hence for n = 1 n = 1 ) Artin reciprocity produces for each σ \sigma a Dirichlet character , or more generally a Hecke character? χ \chi , and therefrom is built a Dirichlet L-function or Hecke L-function L χ L_\chi , respectively, which equals the corresponding Artin L-function L σ L_\sigma ;
for general n n -dimensional Galois representations σ \sigma the conjecture of Langlands correspondence states that there is an automorphic representation π \pi corresponding to σ \sigma and an automorphic L-function L π L_\pi built from that, which equals the Artin L-function L σ L_\sigma .
L-functions typically satisfy analogs of all the special properties enjoyed by the Riemann zeta function , such as satisfying a “functional equation ” which asserts invariance under modular transformations of the parameter.
The generalized Riemann conjecture is concerned with zeros of the Dedekind zeta function for which the L-series (the Dirichlet L-function ) is complicated from the classical Riemann case by the presence of the additional parameter, the Dirichlet character.
context/function field analogy theta function θ \theta zeta function ζ \zeta (= Mellin transform of θ ( 0 , − ) \theta(0,-) )L-function L z L_{\mathbf{z}} (= Mellin transform of θ ( z , − ) \theta(\mathbf{z},-) )eta function η \eta special values of L-functions physics /2d CFT partition function θ ( z , τ ) = Tr ( exp ( − τ ⋅ ( D z ) 2 ) ) \theta(\mathbf{z},\mathbf{\tau}) = Tr(\exp(-\mathbf{\tau} \cdot (D_\mathbf{z})^2)) as function of complex structure τ \mathbf{\tau} of worldsheet Σ \Sigma (hence polarization of phase space ) and background gauge field /source z \mathbf{z} analytically continued trace of Feynman propagator ζ ( s ) = Tr reg ( 1 ( D 0 ) 2 ) s = ∫ 0 ∞ τ s − 1 θ ( 0 , τ ) d τ \zeta(s) = Tr_{reg}\left(\frac{1}{(D_{0})^2}\right)^s = \int_{0}^\infty \tau^{s-1} \,\theta(0,\tau)\, d\tau analytically continued trace of Feynman propagator in background gauge field z \mathbf{z} : L z ( s ) ≔ Tr reg ( 1 ( D z ) 2 ) s = ∫ 0 ∞ τ s − 1 θ ( z , τ ) d τ L_{\mathbf{z}}(s) \coloneqq Tr_{reg}\left(\frac{1}{(D_{\mathbf{z}})^2}\right)^s = \int_{0}^\infty \tau^{s-1} \,\theta(\mathbf{z},\tau)\, d\tau analytically continued trace of Dirac propagator in background gauge field z \mathbf{z} η z ( s ) = Tr reg ( sgn ( D z ) | D z | ) s \eta_{\mathbf{z}}(s) = Tr_{reg} \left(\frac{sgn(D_{\mathbf{z}})}{ { \vert D_{\mathbf{z}} } \vert }\right)^s regularized 1-loop vacuum amplitude pv L z ( 1 ) = Tr reg ( 1 ( D z ) 2 ) pv\, L_{\mathbf{z}}(1) = Tr_{reg}\left(\frac{1}{(D_{\mathbf{z}})^2}\right) / regularized fermionic 1-loop vacuum amplitude pv η z ( 1 ) = Tr reg ( D z ( D z ) 2 ) pv\, \eta_{\mathbf{z}}(1)= Tr_{reg} \left( \frac{D_{\mathbf{z}}}{(D_{\mathbf{z}})^2} \right) / vacuum energy − 1 2 L z ′ ( 0 ) = Z H = 1 2 ln det reg ( D z 2 ) -\frac{1}{2}L_{\mathbf{z}}^\prime(0) = Z_H = \frac{1}{2}\ln\;det_{reg}(D_{\mathbf{z}}^2)
Riemannian geometry (analysis )zeta function of an elliptic differential operator zeta function of an elliptic differential operator eta function of a self-adjoint operator functional determinant , analytic torsion
complex analytic geometry section θ ( z , τ ) \theta(\mathbf{z},\mathbf{\tau}) of line bundle over Jacobian variety J ( Σ τ ) J(\Sigma_{\mathbf{\tau}}) in terms of covering coordinates z \mathbf{z} on ℂ g → J ( Σ τ ) \mathbb{C}^g \to J(\Sigma_{\mathbf{\tau}}) zeta function of a Riemann surface Selberg zeta function Dedekind eta function
arithmetic geometry for a function field Goss zeta function (for arithmetic curves ) and Weil zeta function (in higher dimensional arithmetic geometry )
arithmetic geometry for a number field Hecke theta function , automorphic form Dedekind zeta function (being the Artin L-function L z L_{\mathbf{z}} for z = 0 \mathbf{z} = 0 the trivial Galois representation )Artin L-function L z L_{\mathbf{z}} of a Galois representation z \mathbf{z} , expressible “in coordinates” (by Artin reciprocity ) as a finite-order Hecke L-function (for 1-dimensional representations) and generally (via Langlands correspondence ) by an automorphic L-function (for higher dimensional reps)class number ⋅ \cdot regulator
arithmetic geometry for ℚ \mathbb{Q} Jacobi theta function (z = 0 \mathbf{z} = 0 )/ Dirichlet theta function (z = χ \mathbf{z} = \chi a Dirichlet character )Riemann zeta function (being the Dirichlet L-function L z L_{\mathbf{z}} for Dirichlet character z = 0 \mathbf{z} = 0 )Artin L-function of a Galois representation z \mathbf{z} , expressible “in coordinates” (via Artin reciprocity ) as a Dirichlet L-function (for 1-dimensional Galois representations) and generally (via Langlands correspondence ) as an automorphic L-function
2. Examples
4. References
Stephen Gelbart , section C starting on p. 14 (190) of An elementary introduction to the Langlands program , Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 2, 177–219 (web )
E. Kowalski, first part of Automorphic forms, L-functions and number theory (March 12–16) Three Introductory lectures (pdf )
Dorian Goldfeld , Joseph Hundley , chapter 2 of Automorphic representations and L-functions for the general linear group , Cambridge Studies in Advanced Mathematics 129, 2011 (pdf )
wikipedia L-function , Dirichlet L-function , special values of L-function , generalized Riemann hypothesis , Artin L-function , equivariant L-function , functional equation ), modularity theorem
Terrence Tao? ‘s blog: Distinguished Lecture Series III: Shou-wu Zhang, “Triple L-series and effective Mordell conjecture”
Some history is in
James W. Cogdell, L-functions and non-abelian class eld theory, from Artin to Langlands , 2012 (pdf )
Last revised on July 7, 2024 at 22:55:29.
See the history of this page for a list of all contributions to it.