nLab D=4 N=1 super Yang-Mills theory

Contents

Contents

Idea

super Yang-Mills theory on a 4-dimensional spacetime with N=1N = 1 supersymmetry.

ddNNsuperconformal super Lie algebraR-symmetryblack brane worldvolume
superconformal field theory
via AdS-CFT
A3A\phantom{A}3\phantom{A}A2k+1A\phantom{A}2k+1\phantom{A}AB(k,2)\phantom{A}B(k,2) \simeq osp(2k+1|4)A(2k+1 \vert 4)\phantom{A}ASO(2k+1)A\phantom{A}SO(2k+1)\phantom{A}
A3A\phantom{A}3\phantom{A}A2kA\phantom{A}2k\phantom{A}AD(k,2)\phantom{A}D(k,2)\simeq osp(2k|4)A(2k \vert 4)\phantom{A}ASO(2k)A\phantom{A}SO(2k)\phantom{A}M2-brane
D=3 SYM
BLG model
ABJM model
A4A\phantom{A}4\phantom{A}Ak+1A\phantom{A}k+1\phantom{A}AA(3,k)𝔰𝔩(4|k+1)A\phantom{A}A(3,k)\simeq \mathfrak{sl}(4 \vert k+1)\phantom{A}AU(k+1)A\phantom{A}U(k+1)\phantom{A}D3-brane
D=4 N=4 SYM
D=4 N=2 SYM
D=4 N=1 SYM
A5A\phantom{A}5\phantom{A}A1A\phantom{A}1\phantom{A}AF(4)A\phantom{A}F(4)\phantom{A}ASO(3)A\phantom{A}SO(3)\phantom{A}D4-brane
D=5 SYM
A6A\phantom{A}6\phantom{A}AkA\phantom{A}k\phantom{A}AD(4,k)\phantom{A}D(4,k) \simeq osp(8|2k)A(8 \vert 2k)\phantom{A}ASp(k)A\phantom{A}Sp(k)\phantom{A}M5-brane
D=6 N=(2,0) SCFT
D=6 N=(1,0) SCFT

(Shnider 88, also Nahm 78, see Minwalla 98, section 4.2)

ddNNsuperconformal super Lie algebraR-symmetryblack brane worldvolume
superconformal field theory
via AdS-CFT
A3A\phantom{A}3\phantom{A}A2k+1A\phantom{A}2k+1\phantom{A}AB(k,2)\phantom{A}B(k,2) \simeq osp(2k+1|4)A(2k+1 \vert 4)\phantom{A}ASO(2k+1)A\phantom{A}SO(2k+1)\phantom{A}
A3A\phantom{A}3\phantom{A}A2kA\phantom{A}2k\phantom{A}AD(k,2)\phantom{A}D(k,2)\simeq osp(2k|4)A(2k \vert 4)\phantom{A}ASO(2k)A\phantom{A}SO(2k)\phantom{A}M2-brane
D=3 SYM
BLG model
ABJM model
A4A\phantom{A}4\phantom{A}Ak+1A\phantom{A}k+1\phantom{A}AA(3,k)𝔰𝔩(4|k+1)A\phantom{A}A(3,k)\simeq \mathfrak{sl}(4 \vert k+1)\phantom{A}AU(k+1)A\phantom{A}U(k+1)\phantom{A}D3-brane
D=4 N=4 SYM
D=4 N=2 SYM
D=4 N=1 SYM
A5A\phantom{A}5\phantom{A}A1A\phantom{A}1\phantom{A}AF(4)A\phantom{A}F(4)\phantom{A}ASO(3)A\phantom{A}SO(3)\phantom{A}D4-brane
D=5 SYM
A6A\phantom{A}6\phantom{A}AkA\phantom{A}k\phantom{A}AD(4,k)\phantom{A}D(4,k) \simeq osp(8|2k)A(8 \vert 2k)\phantom{A}ASp(k)A\phantom{A}Sp(k)\phantom{A}M5-brane
D=6 N=(2,0) SCFT
D=6 N=(1,0) SCFT

(Shnider 88, also Nahm 78, see Minwalla 98, section 4.2)

References

General

Original articles:

Review:

  • Yuji Tachikawa, Lectures on 4d4d N=1N=1 dynamics and related topics (arXiv:1812.08946)

See also at N=2 D=4 super Yang-Mills theory.

The KK-compactification of the D=6 N=(1,0) SCFT (on M5-branes) to D=4 N=1 super Yang-Mills:

  • Ibrahima Bah, Christopher Beem, Nikolay Bobev, Brian Wecht, Four-Dimensional SCFTs from M5-Branes (arXiv:1203.0303)

  • Shlomo S. Razamat, Cumrun Vafa, Gabi Zafrir, 4d4d 𝒩=1\mathcal{N} = 1 from 6d(1,0)6d (1,0), J. High Energ. Phys. (2017) 2017: 64 (arXiv:1610.09178)

  • Ibrahima Bah, Amihay Hanany, Kazunobu Maruyoshi, Shlomo S. Razamat, Yuji Tachikawa, Gabi Zafrir, 4d4d 𝒩=1\mathcal{N}=1 from 6d6d 𝒩=(1,0)\mathcal{N}=(1,0) on a torus with fluxes (arXiv:1702.04740)

  • Hee-Cheol Kim, Shlomo S. Razamat, Cumrun Vafa, Gabi Zafrir, E-String Theory on Riemann Surfaces, Fortsch. Phys. (arXiv:1709.02496)

  • Hee-Cheol Kim, Shlomo S. Razamat, Cumrun Vafa, Gabi Zafrir, D-type Conformal Matter and SU/USp Quivers, JHEP06(2018)058 (arXiv:1802.00620)

  • Hee-Cheol Kim, Shlomo S. Razamat, Cumrun Vafa, Gabi Zafrir, Compactifications of ADE conformal matter on a torus, JHEP09(2018)110 (arXiv:1806.07620)

  • Shlomo S. Razamat, Gabi Zafrir, Compactification of 6d minimal SCFTs on Riemann surfaces, Phys. Rev. D 98, 066006 (2018) (arXiv:1806.09196)

  • Jin Chen, Babak Haghighat, Shuwei Liu, Marcus Sperling, 4d N=1 from 6d D-type N=(1,0) (arXiv:1907.00536)

Via D3 branes at resolved orbifold singularities and invoking a generalized McKay correspondence:

  • Pietro G. Fré, Lectures on resolutions à la Kronheimer of orbifold singularities, McKay quivers for Gauge Theories on D3 branes, and the issue of Ricci flat metrics on the resolved three-folds [arXiv:2308.14022]

The Witten index:

  • Leonardo Rastelli, Shlomo S. Razamat, The supersymmetric index in four dimensions, Journal of Physics A: Mathematical and Theoretical, Volume 50, Number 44 (arXiv:1608.02965)

Last revised on June 28, 2024 at 13:30:23. See the history of this page for a list of all contributions to it.