nLab comparison functor




While every functor might be understood as constituting a “comparison” between its domain and codomain-categories, the term “comparison functor” is often understood by default as referring, in categorical algebra, to the unique functor that relates any adjunction to its monadic adjunction – this is the case we discuss here.

But other instances of functorial “comparison” are bound to be relevant. For instance, for the “comparison lemma” in topos theory see there.



(the comparison functor from any adjunction to its monadic adjunction)
Every pair of adjoint functors (FU):CC(F \dashv U) \;\colon\; \mathbf{C}' \leftrightarrow \mathbf{C} (with unit η UF\eta^{U F} and counit ϵ FU\epsilon^{F U}) between categories C\mathbf{C}, C\mathbf{C}' fits into a commuting diagram in Cat of the following form:


  • UFUF\mathcal{E} \;\coloneqq\; U F \;\coloneqq\; U \circ F denotes the induced endofunctor on C\mathbf{C}

    which carries the structure of a monad with

    • unit given by

      η :id Cη UFUF= \eta^{\mathcal{E}} \;\; \colon \;\; id_{\mathbf{C}} \xrightarrow{\;\; \eta^{U F} \;\;} U F \;=\; \mathcal{E}
    • product given by

      μ :=UFUFU(ϵ FU)FUF= \mu^{\mathcal{E}} \;\; \colon \;\; \mathcal{E} \mathcal{E} \;=\; U F U F \xrightarrow{\;\; U ( \epsilon^{F U} ) F \;\;} U F \;=\; \mathcal{E}
  • C \mathbf{C}^{\mathcal{E}} denotes the (“Eilenberg-Moore”-)category of \mathcal{E}-algebras in C\mathbf{C}

    A=(U (A)ρ AU (A)) A \;=\; \Big( \mathcal{E} U^{\mathcal{E}}(A) \xrightarrow{\;\; \rho_A \;\;} U^{\mathcal{E}}(A) \Big)

    in C\mathbf{C} with homomorphisms between them,

  • K UFK^{U F} denotes the “comparison functor” given by

    C K UF C C (U(C)=UFU(C)Uϵ C FUU(C)) \array{ \mathbf{C}' & \xrightarrow{\;\;\;\;\;\;\;\;\;\; K^{U F} \;\;\;\;\;\;\;\;\;\;} & \!\!\!\!\!\!\!\!\!\!\!\!\!\! \mathbf{C}^{\mathcal{E}} \\ C' &\mapsto& { \Big( \mathcal{E} U(C') \,=\, U F U (C') \xrightarrow{\; U \epsilon^{F U}_{C'} \;} U (C') \Big) } }
  • C \mathbf{C}_{\mathcal{E}} denotes the (“Kleisli”-)category of free \mathcal{E}-algebras

    F (C) =((C)μ C (C)) =K UFF(C) =(UF(C)Uϵ F(C) FUUF(C)). \begin{array}{rl} F^{\mathcal{E}}(C) & \;=\; \Big( \mathcal{E} \mathcal{E} (C) \xrightarrow{\;\; \mu^{\mathcal{E}}_C \;\;} \mathcal{E}(C) \Big) \\ \;=\; K^{U F} F(C) & \;=\; \Big( \mathcal{E} U F (C) \xrightarrow{\;\; U \epsilon^{ F U }_{F(C)} \;\;} U F (C) \Big) \,. \end{array}
  • Here the last line makes explicit that

    U F =UF=. U^{\mathcal{E}} F^{\mathcal{E}} \;=\; U F \;=\; \mathcal{E} \,.

    In fact, F U F^{\mathcal{E}} \dashv U^{\mathcal{E}} and this realizes the monadic adjunction whose induced monad is \mathcal{E}.

    Hence the original FUF \dashv U is monadic iff the comparison functor K UFK^{U F} is an equivalence of categories.

(See for instance MacLane (1971), §VI.3)



The initiality of the Kleisli category under monad morphisms was first observed in

Textbook account:

Last revised on September 22, 2023 at 06:21:16. See the history of this page for a list of all contributions to it.