A concrete site is a site whose objects can be thought of as sets with extra structure: it is a category that is a concrete category and a site in a compatible way.
In a category of presheaves on a concrete site one can consider concrete presheaves.
A concrete site is a site with a terminal object such that
the functor is a faithful functor;
for every covering family in the morphism
is surjective.
every (small) concrete category becomes a concrete site when equipped with the trivial coverage (every covering family consists of just an identity morphism);
Any small subcategory of concrete categories such as Top, Diff, etc, with their standard coverages (by open cover)s;
for instance CartSp (covering families are open covers);
which is the site for smooth spaces, including diffeological spaces.
Last revised on May 24, 2016 at 17:46:43. See the history of this page for a list of all contributions to it.