A functorial factorization is a structure on a category that factors any morphism into a composite of two morphisms, in a way that depends functorially on commutative squares.
Functorial factorizations play a prominent role in model category theory. On the one hand, many constructions there do rely on the factorizations into (acyclic) cofibrations and (acyclic) fibrations to be functorial, while, on the other hand, via the small object argument many examples of model categories do in fact carry a functorial factorization. (As a result, some authors include functorial factorization in the axioms of a model category right away.)
Functorial factorizations also play an important role as an ingredient in algebraic weak factorization systems.
A functorial factorization on a category is a way of assigning to any arrow in a pair of composable arrows such that , together with for any commuting square
a morphism completing their factorizations and to a further commuting diagram
in a way that depends functorially on the given commutative square, i.e. .
Write and for the ordinal numbers, regarded as posets and hence as categories. The arrow category is equivalently the functor category , while has as objects pairs of composable morphisms in . There are three injective functors , where omits the index in its image. By precomposition, this induces functors . Here
sends a pair of composable morphisms to their composition;
sends a pair of composable morphisms to the first morphism;
sends a pair of composable morphisms to the second morphism.
For a category, a functorial factorization of the morphisms in is a functor
which is a section of the composition functor .
Not all weak factorization systems are functorial, although most are. This includes those produced by the small object argument, with due care, and also all algebraic weak factorization systems.
All orthogonal factorization systems are automatically functorial.
Sufficient conditions in enriched category theory (in particular enriched model category-theory) for functorial factorization to exist as an enriched functor is discussed in Hirschhorn 02, Theorem 4.3.8, Shulman 06, Prop. 24.2
The following are equivalent:
A endofunctor of maps every morphism in to a morphism , in a functorial way. A point of such an endofunctor assigns to each a pair of morphisms such that , naturally with respect to commutative squares. To say means that has the same codomain as , and to say that respects the points says that is an identity. Thus, is a factorization. For functoriality, the functoriality of gives the commutative square and the functoriality of , while the naturality of gives the commutative square . The converse and dual are straightforward.
An algebraic weak factorization system is a functorial factorization together with compatible enhancements of these endofunctors to a monad and comonad. This can often be detected with the help of a composition law for factorizations.
Philip Hirschhorn, Model Categories and Their Localizations, AMS Math. Survey and Monographs Vol 99 (2002) (AMS, pdf toc, pdf)
Michael Shulman, Homotopy limits and colimits and enriched homotopy theory (arXiv:math/0610194)
Last revised on June 4, 2020 at 06:00:51. See the history of this page for a list of all contributions to it.