model category, model $\infty$-category
Definitions
Morphisms
Universal constructions
Refinements
Producing new model structures
Presentation of $(\infty,1)$-categories
Model structures
for $\infty$-groupoids
on chain complexes/model structure on cosimplicial abelian groups
related by the Dold-Kan correspondence
for equivariant $\infty$-groupoids
for rational $\infty$-groupoids
for rational equivariant $\infty$-groupoids
for $n$-groupoids
for $\infty$-groups
for $\infty$-algebras
general $\infty$-algebras
specific $\infty$-algebras
for stable/spectrum objects
for $(\infty,1)$-categories
for stable $(\infty,1)$-categories
for $(\infty,1)$-operads
for $(n,r)$-categories
for $(\infty,1)$-sheaves / $\infty$-stacks
In a model category every morphism may be factored as a weak equivalence followed by a fibration. Specifically if the morphism is that to the terminal object, this process finds a weakly equivalent fibrant object. This is a fibrant replacement or resolution of the original object.
The dual concept is called cofibrant replacement.
If the factorization is functorial, then it yields a fibrant replacement functor. See at functorial factorization.
Last revised on February 14, 2023 at 16:29:46. See the history of this page for a list of all contributions to it.