Contents

topos theory

category theory

# Contents

## Idea

Given a small category $C$, one can consider the category of presheaves $PSh(C, D)$ valued in some category $D$. Given some assumptions on $D$, any functor of small categories $F : C \to C'$ induces two adjoint pairs

$F_! : PSh(C, D) \rightleftarrows PSh(C', D) : F^*$
$F^* : PSh(C', D) \rightleftarrows PSh(C, D) : F_*$

## Definitions

###### Definition

Let $F : C \to C'$ be a functor of small categories and $D$ some category. The restriction of scalars functor $F^* : PSh(C', D) \to PSh(C, D)$ is given by the formula $H \mapsto H \circ f$, i.e. mapping a presheaf $H : C'^{op} \to D$ to the composite

$C^{op} \stackrel{F}{\to} C'^{op} \stackrel{H}{\to} D.$
###### Proposition

Suppose $D$ admits small colimits (resp. small limits). Then the functor $F^*$ admits a left adjoint $F_!$ (resp. right adjoint $F_*$).

## Properties

###### Lemma

Let $F : C \rightleftarrows C' : G$ be an adjoint pair and consider the induced functors $(F_!, F^*, F_*)$ and $(G_!, G^*, G_*)$. One has

• $F_!$ is left adjoint to $G_!$,
• $F^*$ is left adjoint to $G^*$,
• $F_*$ is left adjoint to $G_*$,
• $F_* = G^*$,
• $F^* = G_!$.

Note that all these claims are in fact equivalent.