nLab heterogeneous hom type

Redirected from "heterogeneous hom-type".

Contents

Idea

In simplicial type theory, a heterogeneous hom type or dependent hom type is to a hom type in the same way that a heterogeneous identity type is to an identity type.

Definition

In simplicial type theory, given a type AA, elements x:Ax:A and y:Ay:A, a function f:𝕀→Af:\mathbb{I} \to A, identifications p 0:f(0)= Axp_0:f(0) =_A x and p 1:f(1)= Ayp_1:f(1) =_A y a type family x:A⊒B(x)x:A \vdash B(x), and elements u:B(x)u:B(x) and v:B(y)v:B(y), the heterogeneous hom-type or dependent hom-type is defined as the dependent sum type

hhom t.B(t)(x,y,f,p 0,p 1,u,v)β‰”βˆ‘ g:∏ i:𝕀B(f(i))(g(0)= t.B(t) (f(0),x,p 0)u)Γ—(g(1)= t.B(t) (f(1),y,p 1)v)\mathrm{hhom}_{t.B(t)}(x, y, f, p_0, p_1, u, v) \coloneqq \sum_{g:\prod_{i:\mathbb{I}} B(f(i))} (g(0) =_{t.B(t)}^{(f(0), x, p_0)} u) \times (g(1) =_{t.B(t)}^{(f(1), y, p_1)} v)

where the type u= t.B(t) (x,y,p)vu =_{t.B(t)}^{(x, y, p)} v is the heterogeneous identity type over the type family x:A⊒B(x)x:A \vdash B(x).

The elements of heterogeneous hom-types are called heterogeneous morphisms or dependent morphisms.

Type theory with shapes formalism

In simplicial homotopy type theory in the type theory with shapes formalism, given a type AA, elements x:Ax:A and y:Ay:A, a type family x:A⊒B(x)x:A \vdash B(x), elements u:B(x)u:B(x) and v:B(y)v:B(y), and a morphism f:hom A(x,y)f:\mathrm{hom}_A(x, y) of a hom-type, the heterogeneous hom type is defined as the dependent extension type

hhom t.B(t)(x,y,f,u,v)β‰”βŸ¨βˆ t:𝟚C(f(t))| [u,v] βˆ‚Ξ” 1⟩\mathrm{hhom}_{t.B(t)}(x, y, f, u, v) \coloneqq \left\langle\prod_{t:\mathbb{2}} C(f(t)) \vert_{[u,v]}^{\partial \Delta^1} \right\rangle

where 𝟚\mathbb{2} is the directed interval primitive, Ξ” 1\Delta^1 is the 11-simplex probe shape, and βˆ‚Ξ” 1\partial \Delta^1 is its boundary.

References

Last revised on April 12, 2025 at 12:00:06. See the history of this page for a list of all contributions to it.