nLab
simplicial type theory
Redirected from "simplicial homotopy type theory".
Contents
Context
Directed Type Theory
Contents
Idea
Simplicial type theory (Riehl & Shulman 2017, Β§3 ) is a homotopy type theory which introduces additional non-fibrant layers on top of Martin-LΓΆf type theory to provide a logical calculus for a directed interval type and with it for geometric shapes , consisting of Segal space -types, Rezk complete -types, and covariant fibrations.
There are many different ways to formalize the directed interval primitive in simplicial type theory:
With axioms
The directed interval primitive π \mathbb{2} in simplicial type theory is a non-trivial bounded total order . Bounded total orders have many definitions in mathematics, such as a bounded partial order satisfying totality, or a lattice satisfying totality. As such, there are multiple possible sets of inference rules one could use to present the directed interval in the formalization.
The axiomx for the directed interval primitive ( π , β€ ) (\mathbb{2}, \leq) as a partial order in the formalization are as follows:
Ξ ctx Ξ β’ π type Ξ ctx Ξ β’ 0 : π Ξ ctx Ξ β’ 1 : π Ξ ctx Ξ , x : π , y : π β’ x β€ y type Ξ ctx Ξ , x : π , y : π β’ Ο β€ ( x , y ) : isProp ( x β€ y ) \frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathbb{2} \; \mathrm{type}} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash 0:\mathbb{2}} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash 1:\mathbb{2}} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2} \vdash x \leq y \; \mathrm{type}} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2} \vdash \tau_\leq(x, y):\mathrm{isProp}(x \leq y)} Ξ ctx Ξ , x : π β’ refl β€ ( x ) : x β€ x Ξ ctx Ξ , x : π , y : π , z : π , p : x β€ y , q : y β€ z β’ trans β€ ( x , y , z , p , q ) : ( x β€ z ) \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2} \vdash \mathrm{refl}_\leq(x):x \leq x} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2}, z:\mathbb{2}, p:x \leq y, q:y \leq z \vdash \mathrm{trans}_\leq(x, y, z, p, q):(x \leq z)} Ξ ctx Ξ , x : π , y : π β’ antisym β€ ( x , y ) : isEquiv ( idtoleqgeq ( x , y ) ) where idtoleqgeq ( x , y ) : ( x = π y ) β ( x β€ y ) Γ ( y β€ x ) idtoleqgeq ( x , x ) ( id π ( x ) ) β ( refl β€ ( x ) , refl β€ ( x ) ) \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{antisym}_\leq(x, y):\mathrm{isEquiv}(idtoleqgeq(x, y))} \quad \mathrm{where} \quad
\begin{array}{l}
idtoleqgeq(x, y):(x =_\mathbb{2} y) \to (x \leq y) \times (y \leq x) \\
idtoleqgeq(x, x)(\mathrm{id}_\mathbb{2}(x)) \coloneqq (\mathrm{refl}_\leq(x), \mathrm{refl}_\leq(x))
\end{array}
Ξ ctx Ξ , x : π , y : π β’ totl β€ ( x , y ) : [ ( x β€ y ) + ( y β€ x ) ] Ξ ctx Ξ , x : π β’ bot β€ ( x ) : 0 β€ x Ξ ctx Ξ , x : π β’ top β€ ( x ) : x β€ 1 \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{totl}_\leq(x, y):[(x \leq y) + (y \leq x)]} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2} \vdash \mathrm{bot}_\leq(x):0 \leq x} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2} \vdash \mathrm{top}_\leq(x):x \leq 1} Ξ ctx Ξ β’ nontriv β€ : ( 0 = π 1 ) β π \frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathrm{nontriv}_\leq:(0 =_\mathbb{2} 1) \to \mathbb{0}}
The axioms for the directed interval primitive π \mathbb{2} as a lattice in the formalization are as follows:
Ξ ctx Ξ β’ π type Ξ ctx Ξ β’ Ο 0 : isSet ( π ) Ξ ctx Ξ β’ 0 : π Ξ ctx Ξ β’ 1 : π Ξ ctx Ξ , x : π , y : π β’ x β§ y : π Ξ ctx Ξ , x : π , y : π β’ x β¨ y : π \frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathbb{2} \; \mathrm{type}} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \tau_0:\mathrm{isSet}(\mathbb{2})} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash 0:\mathbb{2}} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash 1:\mathbb{2}} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2} \vdash x \wedge y:\mathbb{2}} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2} \vdash x \vee y:\mathbb{2}} Ξ ctx Ξ , x : π β’ idem β§ ( x ) : x β§ x = π x Ξ ctx Ξ , x : π , y : π β’ comm β§ ( x , y ) : x β§ y = π y β§ x \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2} \vdash \mathrm{idem}_\wedge(x):x \wedge x =_{\mathbb{2}} x} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{comm}_\wedge(x, y):x \wedge y =_{\mathbb{2}} y \wedge x} Ξ ctx Ξ , x : π , y : π , z : π β’ assoc β§ ( x , y , z ) : ( x β§ y ) β§ z = π x β§ ( y β§ z ) \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2}, z:\mathbb{2} \vdash \mathrm{assoc}_\wedge(x, y, z):(x \wedge y) \wedge z =_{\mathbb{2}} x \wedge (y \wedge z)} Ξ ctx Ξ , x : π β’ lunit β§ ( x ) : 1 β§ x = π x Ξ ctx Ξ , x : π β’ runit β§ ( x ) : x β§ 1 = π x \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2} \vdash \mathrm{lunit}_\wedge(x):1 \wedge x =_{\mathbb{2}} x} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2} \vdash \mathrm{runit}_\wedge(x):x \wedge 1 =_{\mathbb{2}} x} Ξ ctx Ξ , x : π β’ idem β¨ ( x ) : x β¨ x = π x Ξ ctx Ξ , x : π , y : π β’ comm β¨ ( x , y ) : x β¨ y = π y β¨ x \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2} \vdash \mathrm{idem}_\vee(x):x \vee x =_{\mathbb{2}} x} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{comm}_\vee(x, y):x \vee y =_{\mathbb{2}} y \vee x} Ξ ctx Ξ , x : π , y : π , z : π β’ assoc β¨ ( x , y , z ) : ( x β¨ y ) β¨ z = π x β¨ ( y β¨ z ) \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2}, z:\mathbb{2} \vdash \mathrm{assoc}_\vee(x, y, z):(x \vee y) \vee z =_{\mathbb{2}} x \vee (y \vee z)} Ξ ctx Ξ , x : π β’ lunit β¨ ( x ) : 0 β¨ x = π x Ξ ctx Ξ , x : π β’ runit β¨ ( x ) : x β¨ 0 = π x \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2} \vdash \mathrm{lunit}_\vee(x):0 \vee x =_{\mathbb{2}} x} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2} \vdash \mathrm{runit}_\vee(x):x \vee 0 =_{\mathbb{2}} x} Ξ ctx Ξ , x : π , y : π β’ asorp β§ ( x , y ) : x β§ ( x β¨ y ) = π x Ξ ctx Ξ , x : π , y : π β’ asorp β¨ ( x , y ) : x β¨ ( x β§ y ) = π x \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{asorp}_\wedge(x, y):x \wedge (x \vee y) =_{\mathbb{2}} x} \qquad \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{asorp}_\vee(x, y):x \vee (x \wedge y) =_{\mathbb{2}} x} Ξ ctx Ξ , x : π , y : π β’ totl ( x , y ) : [ ( x β§ y = π x ) + ( x β§ y = π y ) ] Ξ ctx Ξ β’ nontriv β€ : ( 0 = π 1 ) β π \frac{\Gamma \; \mathrm{ctx}}{\Gamma, x:\mathbb{2}, y:\mathbb{2} \vdash \mathrm{totl}(x, y):[(x \wedge y =_{\mathbb{2}} x) + (x \wedge y =_{\mathbb{2}} y)]} \quad \frac{\Gamma \; \mathrm{ctx}}{\Gamma \vdash \mathrm{nontriv}_\leq:(0 =_\mathbb{2} 1) \to \mathbb{0}}
We inductively define the n n -simplices as the following family of types:
The first few simplicies can be explicitly written as
Ξ 1 β π \Delta^1 \coloneqq \mathbb{2} Ξ 2 β β t : Fin ( 2 ) β π t ( 1 ) β€ t ( 0 ) \Delta^2 \coloneqq \sum_{t:\mathrm{Fin}(2) \to \mathbb{2}} t(1) \leq t(0) Ξ 3 β β t : Fin ( 3 ) β π ( t ( 2 ) β€ t ( 1 ) ) Γ ( t ( 1 ) β€ t ( 0 ) ) \Delta^3 \coloneqq \sum_{t:\mathrm{Fin}(3) \to \mathbb{2}} (t(2) \leq t(1)) \times (t(1) \leq t(0))
Subshapes of the simplicies could also be defined.
Modalities
Simplicial type theory has recently been augmented with various modalities in the sense of modal type theory (Gratzer, Weinberger, & Buchholtz 2024 , Gratzer, Weinberger, & Buchholtz 2025 ). These modalities include
See also
References
Emily Riehl , Mike Shulman , A type theory for synthetic β-categories , Higher Structures 1 1 (2017) [arxiv:1705.07442 , published article ]
Jonathan Weinberger , A Synthetic Perspective on ( β , 1 ) (\infty,1) -Category Theory: Fibrational and Semantic Aspects [ [ arXiv:2202.13132 ] ]
Jonathan Weinberger , Strict stability of extension types [ [ arXiv:2203.07194 ] ]
Jonathan Weinberger , Generalized Chevalley criteria in simplicial homotopy type theory , arXiv:2403.08190
Daniel Gratzer , Jonathan Weinberger , Ulrik Buchholtz , Directed univalence in simplicial homotopy type theory (arXiv:2407.09146 )
Daniel Gratzer , Jonathan Weinberger , Ulrik Buchholtz , The Yoneda embedding in simplicial type theory (arXiv:2501.13229 )
A talk on synthetic (infinity,1)-category theory in simplicial type theory and infinity-cosmos theory:
A proof assistant implementing simplicial type theory:
Formalization of the
(
β
,
1
)
(\infty,1)
-Yoneda lemma via simplicial homotopy type theory (in Rzk ):
Last revised on February 1, 2025 at 17:42:52.
See the history of this page for a list of all contributions to it.