nLab isomorphism in simplicial type theory

Redirected from "isomorphism in a Segal type".

Context

(,1)(\infty,1)-Category theory

Internal (,1)(\infty,1)-Categories

Directed homotopy type theory

Contents

Definition

There are many possible definitions of an isomorphism in simplicial type theory.

Bi-invertible morphisms

In simplicial type theory, given a type AA and terms x:Ax:A and y:Ay:A, a morphism f:hom A(x,y)f:\mathrm{hom}_A(x, y) is a bi-invertible morphism if the span (f,id x)(f, \mathrm{id}_x) has a left quotient and the cospan (id y,f)(\mathrm{id}_y, f) has a right quotient.

isIso(f)leftQuotient(f,id x)×rightQuotient(id y,f)\mathrm{isIso}(f) \coloneqq \mathrm{leftQuotient}(f, \mathrm{id}_x) \times \mathrm{rightQuotient}(\mathrm{id}_y, f)

Merely quasi-invertible morphisms

In simplicial type theory, given a type AA and terms x:Ax:A and y:Ay:A, a morphism f:hom A(x,y)f:\mathrm{hom}_A(x, y) is a quasi-invertible morphism if one can construct a morphism g:hom A(y,x)g:\mathrm{hom}_A(y, x) called a quasi-inverse such that id x\mathrm{id}_x is the unique composite of ff and gg and id y\mathrm{id}_y is the unique composite of gg and ff.

quasiInverses(f) g:hom A(y,x)isUniqueComposite(f,g,id x)×isUniqueComposite(g,f,id y)\mathrm{quasiInverses}(f) \coloneqq \sum_{g:\mathrm{hom}_A(y, x)} \mathrm{isUniqueComposite}(f, g, \mathrm{id}_x) \times \mathrm{isUniqueComposite}(g, f, \mathrm{id}_y)

A morphism f:hom A(x,y)f:\mathrm{hom}_A(x, y) is a merely quasi-invertible morphism if there merely exists g:hom A(y,x)g:\mathrm{hom}_A(y, x) such that id x\mathrm{id}_x is the unique composite of ff and gg and id y\mathrm{id}_y is the unique composite of gg and ff.

isIso(f)g:hom A(y,x).isUniqueComposite(f,g,id x)×isUniqueComposite(g,f,id y)\mathrm{isIso}(f) \coloneqq \exists g:\mathrm{hom}_A(y, x).\mathrm{isUniqueComposite}(f, g, \mathrm{id}_x) \times \mathrm{isUniqueComposite}(g, f, \mathrm{id}_y)

If AA is a Segal type, this is equivalent to the usual definition of a merely quasi-invertible morphism

isIso(f)g:hom A(y,x).(gf=id x)×(fg=id y)\mathrm{isIso}(f) \coloneqq \exists g:\mathrm{hom}_A(y, x).(g \circ f = \mathrm{id}_x) \times (f \circ g = \mathrm{id}_y)

Equivalence of definitions

These definitions of an isomorphism are equivalent for Segal types. It is unknown whether the definitions are still equivalent for types which are not Segal, and if not, which notion of isomorphism is the right notion for non-Segal types.

Type of isomorphisms

The type of isomorphisms is given by the dependent sum type

iso A(x,y) :hom A(x,y)isIso(f)\mathrm{iso}_A(x, y) \coloneqq \sum_{:\mathrm{hom}_A(x, y)} \mathrm{isIso}(f)

We say that two elements x:Ax:A and y:Ay:A are merely isomorphic if there merely exists an isomorphism between xx and yy:

x Ayf:hom A(x,y).isIso(f)x \cong_A y \coloneqq \exists f:\mathrm{hom}_A(x, y).\mathrm{isIso}(f)

References

Last revised on April 10, 2025 at 18:06:38. See the history of this page for a list of all contributions to it.