nLab directed homotopy type theory



Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism =
propositions as types +programs as proofs +relation type theory/category theory

logicset theory (internal logic of)category theorytype theory
predicatefamily of setsdisplay morphismdependent type
proofelementgeneralized elementterm/program
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
introduction rule for implicationcounit for hom-tensor adjunctionlambda
elimination rule for implicationunit for hom-tensor adjunctionapplication
cut elimination for implicationone of the zigzag identities for hom-tensor adjunctionbeta reduction
identity elimination for implicationthe other zigzag identity for hom-tensor adjunctioneta conversion
truesingletonterminal object/(-2)-truncated objecth-level 0-type/unit type
falseempty setinitial objectempty type
proposition, truth valuesubsingletonsubterminal object/(-1)-truncated objecth-proposition, mere proposition
logical conjunctioncartesian productproductproduct type
disjunctiondisjoint union (support of)coproduct ((-1)-truncation of)sum type (bracket type of)
implicationfunction set (into subsingleton)internal hom (into subterminal object)function type (into h-proposition)
negationfunction set into empty setinternal hom into initial objectfunction type into empty type
universal quantificationindexed cartesian product (of family of subsingletons)dependent product (of family of subterminal objects)dependent product type (of family of h-propositions)
existential quantificationindexed disjoint union (support of)dependent sum ((-1)-truncation of)dependent sum type (bracket type of)
logical equivalencebijection setobject of isomorphismsequivalence type
support setsupport object/(-1)-truncationpropositional truncation/bracket type
n-image of morphism into terminal object/n-truncationn-truncation modality
equalitydiagonal function/diagonal subset/diagonal relationpath space objectidentity type/path type
completely presented setsetdiscrete object/0-truncated objecth-level 2-type/set/h-set
setset with equivalence relationinternal 0-groupoidBishop set/setoid with its pseudo-equivalence relation an actual equivalence relation
equivalence class/quotient setquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
-0-truncated higher colimitquotient inductive type
coinductionlimitcoinductive type
presettype without identity types
set of truth valuessubobject classifiertype of propositions
domain of discourseuniverseobject classifiertype universe
modalityclosure operator, (idempotent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels


Higher category theory

higher category theory

Basic concepts

Basic theorems





Universal constructions

Extra properties and structure

1-categorical presentations



What homotopy type theory is for homotopy theory/(∞,1)-category theory, directed homotopy type theory is (or should be) for directed homotopy theory/(∞,n)-category theory.

More in detail: Where


A proposal for the case n=n = \infty (potentially describing (∞,∞)-categories aka omega-categories) is opetopic type theory, going back to Finster (2012).

A proposal for the case n=1n = 1 with the directed analog of the univalence axiom included — hence for a type theory whose types may be interpreted as (∞,1)-categories/(∞,2)-sheaves and which itself would be the internal language of the ( , 2 ) (\infty,2) -categories/ ( , 2 ) (\infty,2) -toposes that these form — is announced in Cisinski et al. (2023).



Cisinski et al.

This is based on the discussion of straightening and unstraightening entirely within the context of quasi-categories from

which (along the lines of the discussion of the universal left fibration from Cisinski 2019) allows to understand the universal coCartesian fibration as categorical semantics for the univalent type universe in directed homotopy type theory (see video 3 at 1:16:58 and slide 3.33).

But the actual type-theoretic syntax (inference rules) for this intended semantics remains to be given:

[Cisinski in video 3 at 1:27:43]: I won’t provide the full syntax yet and actually I would be very happy to discuss that, because we don’t know yet and I have questions myself, actually.

[Awodey in video 3 at 1:46:23]: Maybe I’ll suggest something, you tell me if you agree: What we have is a kind of axiomatization of the semantics of a system for type theory, so that we know what exactly we want formalize in the type theory, and what depends on what, and it articulates and structures the intended interpretation of the type theory in a very useful way. Maybe in the way that the axiomatic description of a cartesian closed category was very good to have for formulating the lambda-calculus. But I think that what we have is more on the side of the axiomatic description of the semantics, like the cartesian closed category, that it is on the side of the lambda-calculus itself. So, maybe I would suggest the term “abstract type theory” to describe this system as an intermediate in between an actual formally implemented system of type theory and the big unclear world of possible semantics and all the different structures that one could try to capture with a type theory, in between is this abstract type theory which specifies a particular structure that we want to capture in our type theory, which is a very very useful methodological step. […] I am trying to maybe reconcile:

Some people would prefer to call a type theory only something which can immediately be implemented in a computer. So that’s different than an abstract description of a structure that we would want to describe in such a type theory.

[Cisinski in video 3 at 1:49:28]: I agree with what you say but I still have the hope to be able to produce an actual syntax […] that’s really the goal.

Last revised on March 29, 2023 at 17:17:09. See the history of this page for a list of all contributions to it.