nLab hypergeometric KZ-solutions -- references

Braid representations via twisted cohomology of configuration spaces

Braid representations via twisted cohomology of configuration spaces

The “hypergeometric integral” construction of conformal blocks for affine Lie algebra/WZW model-2d CFTs and of more general solutions to the Knizhnik-Zamolodchikov equation, via twisted de Rham cohomology of configuration spaces of points, originates with:

following precursor observations due to:

The proof that for rational levels this construction indeed yields conformal blocks is due to:

Review:

See also:

This “hypergeometric” construction uses results on the twisted de Rham cohomology of configuration spaces of points due to:

also:

reviewed in:

  • Yukihito Kawahara, The twisted de Rham cohomology for basic constructions of hyperplane arrangements and its applications, Hokkaido Math. J. 34 2 (2005) 489-505 [[doi:10.14492/hokmj/1285766233]]

Discussion for the special case of level=0=0 (cf. at logarithmic CFT – Examples):

Interpretation of the hypergeometric construction as happening in twisted equivariant differential K-theory, showing that the K-theory classification of D-brane charge and the K-theory classification of topological phases of matter both reflect braid group representations as expected for defect branes and for anyons/topological order, respectively:

Last revised on March 11, 2024 at 09:23:30. See the history of this page for a list of all contributions to it.