synthetic differential geometry
Introductions
from point-set topology to differentiable manifolds
geometry of physics: coordinate systems, smooth spaces, manifolds, smooth homotopy types, supergeometry
Differentials
Tangency
The magic algebraic facts
Theorems
Axiomatics
Models
differential equations, variational calculus
Chern-Weil theory, ∞-Chern-Weil theory
Cartan geometry (super, higher)
geometric representation theory
representation, 2-representation, ∞-representation
Grothendieck group, lambda-ring, symmetric function, formal group
principal bundle, torsor, vector bundle, Atiyah Lie algebroid
Eilenberg-Moore category, algebra over an operad, actegory, crossed module
Be?linson-Bernstein localization?
algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)
quantum mechanical system, quantum probability
interacting field quantization
A large class of solutions of the Knizhnik-Zamolodchikov equation, hence a large class of braid group representations, arises as the holomorphic twisted de Rham cohomology (twisted by a “local system”) of configuration spaces of points in the punctured plane (Schechtman & Varchenko 89, 90, 91). This subsumes in particular the construction of conformal blocks (on the punctured Riemann sphere) for 2d CFTs of affine Lie algebra/WZW model-type (Feigin, Schechtman & Varchenko 90, 94, 95).
Since the canonical differential form-representatives in this construction may be regarded as generalized hypergeometric functions, the original authors referred to this approach as “hypergeometric solutions” to the KZ equation (Schechtman & Varchenko 90). In hindsight, it is not the theory of hypergeometric functions that drives the theory, but the peculiarities of (holomorphic) local systems and their twisted de Rham cohomology of configuration spaces of points.
The “hypergeometric integral” construction of conformal blocks for affine Lie algebra/WZW model-2d CFTs and of more general solutions to the Knizhnik-Zamolodchikov equation, via twisted de Rham cohomology of configuration spaces of points, originates with:
Vadim Schechtman, Alexander Varchenko, Integral representations of N-point conformal correlators in the WZW model, Max-Planck-Institut für Mathematik, (1989) Preprint MPI/89- cds:1044951
Etsuro Date, Michio Jimbo, Atsushi Matsuo, Tetsuji Miwa, Hypergeometric-type integrals and the -Knizhnik-Zamolodchikov equation, International Journal of Modern Physics B 04 05 (1990) 1049-1057 doi:10.1142/S0217979290000528
Atsushi Matsuo, An application of Aomoto-Gelfand hypergeometric functions to the Knizhnik-Zamolodchikov equation, Communications in Mathematical Physics 134 (1990) 65–77 doi:10.1007/BF02102089
Vadim Schechtman, Alexander Varchenko, Hypergeometric solutions of Knizhnik-Zamolodchikov equations, Lett. Math. Phys. 20 (1990) 279–283 doi:10.1007/BF00626523
Vadim Schechtman, Alexander Varchenko, Arrangements of hyperplanes and Lie algebra homology, Inventiones mathematicae 106 1 (1991) 139-194 dml:143938, pdf
following precursor observations due to:
Vladimir S. Dotsenko, Vladimir A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nuclear Physics B 240 3 (1984) 312-348 doi:10.1016/0550-3213(84)90269-4
Philippe Christe, Rainald Flume, The four-point correlations of all primary operators of the conformally invariant -model with Wess-Zumino term, Nuclear Physics B
282 (1987) 466-494 doi:10.1016/0550-3213(87)90693-6
The proof that for rational levels this construction indeed yields conformal blocks is due to:
Boris Feigin, Vadim Schechtman, Alexander Varchenko, On algebraic equations satisfied by correlators in Wess-Zumino-Witten models, Lett Math Phys 20 (1990) 291–297 doi:10.1007/BF00626525
Boris Feigin, Vadim Schechtman, Alexander Varchenko, On algebraic equations satisfied by hypergeometric correlators in WZW models. I, Commun. Math. Phys. 163 (1994) 173–184 doi:10.1007/BF02101739
Boris Feigin, Vadim Schechtman, Alexander Varchenko, On algebraic equations satisfied by hypergeometric correlators in WZW models. II, Comm. Math. Phys. 170 1 (1995) 219-247 [euclid:cmp/1104272957]
Review:
Alexander Varchenko, Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups, Advanced Series in Mathematical Physics 21, World Scientific 1995 (doi:10.1142/2467)
Ivan Cherednik, Section 8.2 of: Lectures on Knizhnik-Zamolodchikov equations and Hecke algebras, Mathematical Society of Japan Memoirs 1998 (1998) 1-96 doi:10.2969/msjmemoirs/00101C010
Pavel Etingof, Igor Frenkel, Alexander Kirillov, Lecture 7 in: Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations, Mathematical surveys and monographs 58, American Mathematical Society (1998) ISBN:978-1-4704-1285-2, review pdf
Toshitake Kohno, Homological representations of braid groups and KZ connections, Journal of Singularities 5 (2012) 94-108 doi:10.5427/jsing.2012.5g, pdf
Toshitake Kohno, Local Systems on Configuration Spaces, KZ Connections and Conformal Blocks, Acta Math Vietnam 39 (2014) 575–598 doi:10.1007%2Fs40306-014-0088-6, pdf
Toshitake Kohno, Introduction to representation theory of braid groups, Peking 2018 pdf, pdf
(motivation from braid representations)
See also:
Alexander Varchenko, Asymptotic solutions to the Knizhnik-Zamolodchikov equation and crystal base, Comm. Math. Phys. 171 1 (1995) 99-137 arXiv:hep-th/9403102, doi:10.1007/BF02103772
Edward Frenkel, David Ben-Zvi, Section 14.3 in: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs 88, AMS 2004 ISBN:978-1-4704-1315-6, web
This “hypergeometric” construction uses results on the twisted de Rham cohomology of configuration spaces of points due to:
Peter Orlik, Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent Math 56 (1980) 167–189 doi:10.1007/BF01392549
Kazuhiko Aomoto, Gauss-Manin connection of integral of difference products, J. Math. Soc. Japan 39 2 (1987) 191-208 doi:10.2969/jmsj/03920191
Hélène Esnault, Vadim Schechtman, Eckart Viehweg, Cohomology of local systems on the complement of hyperplanes, Inventiones mathematicae 109.1 (1992) 557-561 pdf
Vadim Schechtman, H. Terao, Alexander Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, Journal of Pure and Applied Algebra 100 1–3 (1995) 93-102 arXiv:hep-th/9411083, doi:10.1016/0022-4049(95)00014-N
also:
Peter Orlik, Hypergeometric integrals and arrangements, Journal of Computational and Applied Mathematics 105 (1999) 417–424 doi:10.1016/S0377-0427(99)00036-9, pdf
Daniel C. Cohen, Peter Orlik, Arrangements and local systems, Math. Res. Lett. 7 (2000) 299-316 arXiv:math/9907117, doi:10.4310/MRL.2000.v7.n3.a5
reviewed in:
Discussion for the special case of level (cf. at logarithmic CFT – Examples):
Fedor A. Smirnov, Remarks on deformed and undeformed Knizhnik-Zamolodchikov equations, arXiv:hep-th/9210051
Fedor A. Smirnov, Form factors, deformed Knizhnik-Zamolodchikov equations and finite-gap integration, Communications in Mathematical Physics 155 (1993) 459–487 doi:10.1007/BF02096723, arXiv:hep-th/9210052
S. Pakuliak, A. Perelomov, Relation Between Hyperelliptic Integrals, Mod. Phys. Lett. 9 19 (1994) 1791-1798 doi:10.1142/S0217732394001647
Interpretation of the hypergeometric construction as happening in twisted equivariant differential K-theory, showing that the K-theory classification of D-brane charge and the K-theory classification of topological phases of matter both reflect braid group representations as expected for defect branes and for anyons/topological order, respectively:
Last revised on May 11, 2022 at 18:38:08. See the history of this page for a list of all contributions to it.