linear algebra, higher linear algebra
(…)
An inner product space (“scalar product”, i.e. with values in scalars) is a vector space equipped with a (conjugate)-symmetric bilinear or sesquilinear form: a linear map from the tensor product of with itself, or of with its dual module to the ground ring .
One often studies positive-definite inner product spaces; for these, see Hilbert space. Here we do not assume positivity (positive semidefiniteness) or definiteness (nondegeneracy). See also bilinear form.
The group of automorphisms of an inner product space is the orthogonal group of an inner product space.
Let be a vector space over the field (or more generally a ring) . Suppose that is equipped with an involution , called conjugation; in many examples, this will simply be the identity function, but not always. An inner product on is a function
that is (1–3) sesquilinear (or bilinear when the involution is the identity) and (4) conjugate-symmetric (or symmetric when the involution is the identity). That is:
Here we use the physicist's convention that the inner product is antilinear (= conjugate-linear) in the first variable rather than in the second, rather than the mathematician's convention, which is the reverse. The physicist's convention fits in a little better with -Hilbert spaces and is often used in a generalization for Hilbert modules. Note that we use the same ring as values of the inner product as for scalars. Notice that is written with on the right for the case that we deal with noncommutative division ring.
Are the two conventions really equivalent when is noncommutative? —Toby
(The axiom list above is rather redundant. First of all, (1) follows from (3) by setting ; besides that, (1–3) come in pairs, only one of which is needed, since each half follows from the other using (4). It is even possible to derive (3) from (2) under some circumstances.)
An inner product space is simply a vector space equipped with an inner product.
We define a function by ; this is called the norm of . As the notation suggests, it is common to take the norm of to be the square root of this expression in contexts where that makes sense, but for us is an atomic symbol. The norm of is real in that it equals its own conjugate, by (4).
Notice that, by (1), for all . In fact, the subset is a linear subspace of . Of course, we also have , but may not be a subspace. These observations motivate some possible conditions on the inner product:
(In constructive mathematics, we usually want an inequality relation relative to which the vector-space operations and the inner product are strongly extensional, to make sense of the conditions with in them. We can also use contrapositives to put in the other conditions, which makes them stronger if the inequality relation is tight.)
An inner product is definite iff it's both semidefinite and nondegenerate. Semidefinite inner products behave very much like definite ones; you can mod out by the elements with norm to get a quotient space with a definite inner product. In a similar way, every inner product space has a nondegenerate quotient.
Now suppose that is equipped with a partial order. (Note that the complex numbers are standardly so equipped, with iff is a nonnegative real.) Then we can consider other conditions on the inner product:
In this case, we have these theorems:
Negative (semi)definite inner products behave very much like positive (semi)definite ones; you can turn one into the other by multiplying all inner products by .
The study of positive definite inner product spaces (hence essentially of all semidefinite inner product spaces over partially ordered fields) is essentially the study of Hilbert spaces. (For Hilbert spaces, one usually uses a topological field, typically , and requires a completeness condition, but this does not effect the algebraic properties much.) The study of indefinite inner product spaces is very different; see the English Wikipedia article on Krein space?s for some of it.
All of this definiteness terminology may now be applied to an operator on , since is another inner product (on , if necessary). See positive operator.
Hilbert spaces (over ), for example ;
Finite-dimensional modules over , the quaternions.
semisimple Lie algebras with the negative of the Killing form are positive-definite inner product spaces.
Discussion in terms of self-dual objects in suitable symmetric monoidal categories:
Last revised on October 19, 2022 at 07:19:42. See the history of this page for a list of all contributions to it.