nLab
quasi-Hopf algebra

Contents

Contents

Idea

General

The notion of a quasibialgebra generalizes this of a bialgebraHopf algebra by introducing a nontrivial associativity coherence (Drinfeld 89) isomorphisms (representable by multiplication with an element in triple tensor product) into axioms; a quasi-Hopf algebra is a quasibialgebra with an antipode satisfying axioms which also involve nontrivial left and right unit coherences.

In particular, quasi-Hopf algebras may be obtained from ordinary Hopf algebras by twisting by a Drinfeld associator, i.e. a nonabelian bialgebra 3-cocycle.

Motivation from quantum field theory

Drinfel’d was motivated by study of monoidal categories in rational 2d conformal field theory (RCFT) as well as by an idea from Grothendieck‘s Esquisse namely the Grothendieck-Teichmüller tower and its modular properties. In RCFT, the monoidal categories appearing can be, by Tannaka reconstruction considered as categories of modules of Hopf algebra-like objects where the flexibility of associativity coherence in building a theory were natural thus leading to quasi-Hopf algebras.

A special case of the motivation in RCFT has a toy example of Dijkgraaf-Witten theory which can be quite geometrically explained. Namely, where the groupoid convolution algebra of the delooping groupoid BG\mathbf{B}G of a finite group GG naturally has the structure of a Hopf algebra, the twisted groupoid convolution algebra of BG\mathbf{B}G equipped with a 3-cocycle c:BGB 3U(1)c \colon \mathbf{B}G \to \mathbf{B}^3 U(1) is naturally a quasi-Hopf algebra. Since such a 3-cocycle is precisely the background gauge field of the 3d TFT called Dijkgraaf-Witten theory, and hence quasi-Hopf algebras arise there (Dijkgraaf-Pasquier-Roche 91).

Definition (Drinfeld)

A quasibialgebra is a unital associative algebra (A,m,η)(A,m,\eta) with a structure of not necessarily coassociative coalgebra (A,Δ,ϵ)(A,\Delta,\epsilon), with multiplicative comultiplication Δ\Delta and counit ϵ\epsilon, and an invertible element ϕAAA\phi \in A\otimes A\otimes A such that

(i) the coassociativity is modified by conjugation by ϕ\phi in the sense

(Δ1)Δ(a)=ϕ((1Δ)Δ(a))ϕ 1,aA, (\Delta \otimes 1)\Delta(a) = \phi\left((1\otimes\Delta)\Delta(a)\right)\phi^{-1},\,\,\,\,\,\forall a\in A,

(ii) the following pentagon identity holds

(11Δ)(ϕ)(Δ11)(ϕ)=(1ϕ)(1Δ1)(ϕ)(ϕ1) (1\otimes 1\otimes\Delta)(\phi)(\Delta\otimes 1\otimes 1)(\phi) = (1\otimes\phi)(1\otimes\Delta\otimes 1)(\phi)(\phi\otimes 1)

(iii) some identities involving unit η\eta and counit ϵ\epsilon hold:

(ϵA)Δ(a)=a=(Aϵ)Δ(a),aA; (\epsilon\otimes A)\Delta(a) = a = (A\otimes\epsilon)\Delta(a), \,\,\,\,\,\,a\in A;
(AϵA)ϕ=1. (A\otimes\epsilon\otimes A)\phi = 1.

It follows that (ϵϵA)ϕ=1=(Aϵϵ)ϕ(\epsilon\otimes\epsilon\otimes A)\phi = 1 = (A\otimes\epsilon\otimes\epsilon)\phi.

The category of left AA-modules is a monoidal category, namely the coproduct is used to define the action of AA on the tensor product of modules (M,ν M)(M,\nu^M), (N,ν N)(N,\nu^N):

A(MN)ΔMN(AA)(MN)(AM)(AN)ν Mν NMN A \otimes (M\otimes N) \stackrel{\Delta\otimes M\otimes N}\longrightarrow (A\otimes A)\otimes(M\otimes N) \rightarrow (A\otimes M)\otimes (A\otimes N)\stackrel{\nu_M\otimes\nu_N}\longrightarrow M\otimes N

Using the Sweedler-like notation ϕ=ϕ 1ϕ 2ϕ 3\phi = \sum \phi^1\otimes \phi^2\otimes \phi^3, formulas

Φ M,N,P:(MN)PM(NP) \Phi_{M,N,P}: (M\otimes N)\otimes P\stackrel\cong\longrightarrow M\otimes (N\otimes P)
(mn)p(ϕ 1m)((ϕ 2n)(ϕ 3p)) (m\otimes n)\otimes p\mapsto \sum (\phi^1\triangleright m) \otimes ((\phi^2\triangleright n)\otimes (\phi^3\triangleright p))

define a natural transformation Φ\Phi and the pentagon for ϕ\phi yields the MacLane’s pentagon for Φ\Phi understood as a new associator,

(MΦ N,P,Q)Φ M,NP,Q(Φ M,N,PQ)=Φ M,N,PQΦ MN,P,Q (M\otimes\Phi_{N,P,Q})\Phi_{M,N\otimes P,Q}(\Phi_{M,N,P}\otimes Q)=\Phi_{M,N,P\otimes Q}\Phi_{M\otimes N,P,Q}

For this reason, ϕ\phi is sometimes called the associator of the quasibialgebra. While it is due Drinfeld, another variant of it, written as a formal power series and used in knot theory is often called the Drinfeld associator (see there).

A quasi-Hopf algebra is a quasibialgebra with a suitable notion of antipode.

Twisting quasibialgebras by 2-cochains

The associator ϕ\phi is a counital 3-cocycle in the sense of bialgebra cohomology theory of Majid. The 3-cocycle condition is the pentagon for ϕ\phi. The abelian cohomology would add a coboundary of 2-cochain to get a cohomologous 3-cocycle. In nonabelian case, however, the twist by an invertible 2-cochain is done in a nonabelian way, described by Drinfeld and generalized by Majid to nn-cochains.

Thus, for a bialgebra AA, and fixed nn, the ii-th coface

i=id A (i1)Δid A (ni):A nA (n+1), \partial^i = id_{A^{\otimes (i-1)}}\otimes \Delta \otimes \id_{A^{\otimes (n-i)}} : A^{\otimes n}\to A^{\otimes (n+1)},

for 1in1\leq i\leq n, and 0=1id A n\partial^0 = 1\otimes id_{A^{\otimes n}}, n=id A n1\partial^n = id_{A^{\otimes n}}\otimes 1. For FH nF\in H^{\otimes n}, Majid defines

+F= ieven( iF), F= iodd( iF), \partial^+ F = \prod_{i\,\,\,\,even} (\partial^i F),\,\,\,\,\,\partial^- F = \prod_{i\,\,\,\,odd} (\partial^i F),

where the products are in the order of ascending ii. If FA nF\in A^{\otimes n} is a cochain then its coboundary is δF=( +F)( F 1)\delta F = (\partial^+ F)(\partial^- F^{-1}), which is automatically an (n+1)(n+1)-cochain. If FinA nFin A^{\otimes n} is an nn-cochain and ϕA (n+1)\phi\in A^{\otimes (n+1)} is an (n+1)(n+1)-cochain then one defines a cochain twist ϕ F\phi^F of ϕ\phi by FF by the formula

ϕ F=( +F)ϕ( F 1). \phi^F = (\partial^+ F)\phi(\partial^- F^{-1}).

Drinfeld proved that for n=2n=2 the following is true. Given a quasiabialgebra A=(A,m,η,Δ,ϵ,ϕ)A = (A,m,\eta,\Delta,\epsilon,\phi) and a 2-cochain FF, the data A F=(A,m,η,FΔ()F 1,ϵ,ϕ F)A^F = (A,m,\eta,F\Delta(-)F^{-1},\epsilon,\phi^F) is also a quasibialgebra. Furthermore, categories of representations AmodA-mod and A FmodA^F-mod are monoidally equivalent reflecting the idea that cohomologous cocycles lead to nonessential categorical effects. If (A,R)(A,R) is quasitriangular quasibialgebra then we can twist the R-element RHHR\in H\otimes H to R F=F 21RFR^F = F_{21} R F to obtain quasitriangular quasibialgebra (A F,R F)(A^F,R^F) and their braided monoidal categories of representations are braided monoidally equivalent.

References

The notion was introduced in

  • Vladimir Drinfel'd, Квазихопфовы алгебры, Algebra i Analiz 1 (1989), no. 6, 114–148, pdf; translation Quasi-Hopf algebras, Leningrad Math. J. 1 (1990), no. 6, 1419–1457 MR1047964

The relation to Dijkgraaf-Witten theory appeared in

  • Robbert Dijkgraaf, V. Pasquier, P. Roche, QuasiHopf algebras, group cohomology and orbifold models, Nucl. Phys. B Proc. Suppl. 18B (1990), 60-72; Quasi-quantum groups related to orbifold models, Modern quantum field theory (Bombay, 1990), 375–383, World Sci. 1991

and some arguments about the general relevance of quasi-Hopf algebras is in

  • Gerhard Mack, Volker Schomerus, Quasi Hopf quantum symmetry in quantum theory, Nuclear Physics B 370:1 (1992) 185–230 doi

Recently a monograph appeared

  • Daniel Bulacu, Stefaan Caenepeel, Florin Panaite, Freddy Van Oystaeyen, Quasi-Hopf algebras: a categorical approach, 544 pp., EMA 174 (2019)

Wikipedia article: Quasi-Hopf algebra

Other articles include

  • В. Г. Дринфельд, О структуре квазитреугольных квазихопфовых алгебр, Функц. анализ и его прил. 26:1 (1992), 78–80, pdf; transl. V. G. Drinfeld, Structure of quasitriangular quasi-hopf algebras, Funct. Anal. Appl., 26:1 (1992), 63–65

  • V. G. Drinfelʹd, О квазитреугольных квазихопфовых алгебрах и одной группе, тесно связанной с Gal(Q¯/Q)\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf {Q}), Algebra i Analiz 2 (1990), no. 4, 149–181, pdf; translation On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q¯/Q)\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf {Q}), Leningrad Math. J. 2 (1991), no. 4, 829–860, MR1080203

  • V. G. Drinfelʹd, Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations, Problems of modern quantum field theory (Alushta, 1989), 1–13, Res. Rep. Phys., Springer 1989.

  • Shahn Majid, Quantum double for quasi-Hopf algebras, Lett. Math. Phys. 45 (1998), no. 1, 1–9, MR2000b:16077, doi, q-alg/9701002

  • Peter Schauenburg, Hopf modules and the double of a quasi-Hopf algebra, Trans. Amer. Math. Soc. 354 (2002), 3349-3378 pdf

  • M. Jimbo, H. Konno, S. Odake, J. Shiraishi, Quasi-Hopf twistors for elliptic quantum groups, Transformation Groups 4(4), 303–327 (1999) doi

  • Ivan Kobyzev, Ilya Shapiro, A categorical approach to cyclic cohomology of quasi-Hopf algebras and Hopf algebroids, Applied Categorical Structures, 27:1 (2019) 85–109 doi

  • L Frappat, D Issing, E Ragoucy, The quantum determinant of the elliptic algebra 𝒜 q,p(gl^ N)\mathcal{A}_{q, p}(\widehat{gl}_N), J. Phys. A51:44, doi

Last revised on October 4, 2019 at 12:05:35. See the history of this page for a list of all contributions to it.