nLab
pentagon identity

Contents

Idea

The coherence identity satisfied by an associator in a monoidal category or more generally in a bicategory, (2,1)-category etc.

<image height='100' width='100' x='0' y='0'></image> Layer 1 ( w x ) ( y z ) (w\otimes x)\otimes(y\otimes z) ( ( w x ) y ) z ((w\otimes x)\otimes y)\otimes z w ( x ( y z ) ) w\otimes (x\otimes(y\otimes z)) ( w ( x y ) ) z (w\otimes (x\otimes y))\otimes z w ( ( x y ) z ) w\otimes ((x\otimes y)\otimes z) a w x , y , z a_{w\otimes x,y,z} a w , x , y z a_{w,x,y\otimes z} a w , x , y 1 z a_{w,x,y}\otimes 1_{z} 1 w a x , y , z 1_w\otimes a_{x,y,z} a w , x y , z a_{w,x\otimes y,z} \begin{svg} <svg width="480" height="320" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" xmlns:math="http://www.w3.org/1998/Math/MathML" se:nonce="39887"> <defs> <marker id="se_marker_end_svg_39887_2" markerUnits="strokeWidth" orient="auto" viewBox="0 0 100 100" markerWidth="5" markerHeight="5" refX="50" refY="50"> <path id="svg_39887_3" d="m100,50l-100,40l30,-40l-30,-40l100,40z" fill="#000000" stroke="#000000" stroke-width="10"/> </marker> <marker refY="50" refX="50" markerHeight="5" markerWidth="5" viewBox="0 0 100 100" orient="auto" markerUnits="strokeWidth" id="se_marker_end_svg_39887_16"> <path stroke-width="10" stroke="#000000" fill="#000000" d="m100,50l-100,40l30,-40l-30,-40l100,40z" id="svg_39887_11"/> </marker> <marker refY="50" refX="50" markerHeight="5" markerWidth="5" viewBox="0 0 100 100" orient="auto" markerUnits="strokeWidth" id="se_marker_end_svg_39887_15"> <path stroke-width="10" stroke="#000000" fill="#000000" d="m100,50l-100,40l30,-40l-30,-40l100,40z" id="svg_39887_14"/> </marker> <marker refY="50" refX="50" markerHeight="5" markerWidth="5" viewBox="0 0 100 100" orient="auto" markerUnits="strokeWidth" id="se_marker_end_svg_39887_18"> <path stroke-width="10" stroke="#000000" fill="#000000" d="m100,50l-100,40l30,-40l-30,-40l100,40z" id="svg_39887_19"/> </marker> <marker refY="50" refX="50" markerHeight="5" markerWidth="5" viewBox="0 0 100 100" orient="auto" markerUnits="strokeWidth" id="se_marker_end_svg_39887_17"> <path stroke-width="10" stroke="#000000" fill="#000000" d="m100,50l-100,40l30,-40l-30,-40l100,40z" id="svg_39887_20"/> </marker> <pattern height="100" width="100" y="0" x="0" patternUnits="userSpaceOnUse" id="gridpattern"> <image height="100" width="100" y="0" x="0"/> </pattern> </defs> <g class="layer"> <title>Layer 1</title> <line marker-end="url(#se_marker_end_svg_39887_15)" id="svg_39887_15" stroke="#000000" stroke-width="2" y2="116" x2="403" y1="31" x1="254"/> <line marker-end="url(#se_marker_end_svg_39887_16)" id="svg_39887_16" stroke="#000000" stroke-width="2" y2="291" x2="110" y1="151" x1="67"/> <line marker-end="url(#se_marker_end_svg_39887_17)" id="svg_39887_17" stroke="#000000" stroke-width="2" y2="146" x2="407" y1="296" x1="357"/> <line marker-end="url(#se_marker_end_svg_39887_18)" id="svg_39887_18" stroke="#000000" stroke-width="2" y2="308" x2="308" y1="308" x1="200"/> <line stroke="#000000" stroke-width="2" x1="67" y1="116" x2="220.00001" y2="31" id="svg_39887_2" marker-end="url(#se_marker_end_svg_39887_2)"/> <foreignObject x="170.333333" y="5" id="svg_39887_1" font-size="16" width="136" height="20"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>w</mi> <mo>⊗</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>⊗</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>⊗</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <annotation encoding="application/x-tex">(w\otimes x)\otimes(y\otimes z)</annotation> </semantics> </math> </foreignObject> <foreignObject height="20" width="136" font-size="16" id="svg_39887_13" y="120" x="1"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>w</mi> <mo>⊗</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>⊗</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>⊗</mo> <mi>z</mi> </mrow> <annotation encoding="application/x-tex">((w\otimes x)\otimes y)\otimes z</annotation> </semantics> </math> </foreignObject> <foreignObject x="343.666667" y="120" id="svg_39887_4" font-size="16" width="136" height="20"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mi>w</mi> <mo>⊗</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>⊗</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>⊗</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> <annotation encoding="application/x-tex">w\otimes (x\otimes(y\otimes z))</annotation> </semantics> </math> </foreignObject> <foreignObject height="20" width="136" font-size="16" id="svg_39887_5" y="295" x="51.666667"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>w</mi> <mo>⊗</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>⊗</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>⊗</mo> <mi>z</mi> </mrow> <annotation encoding="application/x-tex">(w\otimes (x\otimes y))\otimes z</annotation> </semantics> </math> </foreignObject> <foreignObject x="317" y="295" id="svg_39887_6" font-size="16" width="136" height="20"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mi>w</mi> <mo>⊗</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>⊗</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>⊗</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> <annotation encoding="application/x-tex">w\otimes ((x\otimes y)\otimes z)</annotation> </semantics> </math> </foreignObject> <foreignObject height="24" width="72" font-size="16" id="svg_39887_7" y="52" x="66.333333"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>w</mi> <mo>⊗</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> </msub> </mrow> <annotation encoding="application/x-tex">a_{w\otimes x,y,z}</annotation> </semantics> </math> </foreignObject> <foreignObject x="338" y="52" id="svg_39887_8" font-size="16" width="72" height="24"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>⊗</mo> <mi>z</mi> </mrow> </msub> </mrow> <annotation encoding="application/x-tex">a_{w,x,y\otimes z}</annotation> </semantics> </math> </foreignObject> <foreignObject height="24" width="92" font-size="16" id="svg_39887_9" y="215" x="-0.666667"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> </msub> <mo>⊗</mo> <msub> <mn>1</mn> <mi>z</mi> </msub> </mrow> <annotation encoding="application/x-tex">a_{w,x,y}\otimes 1_{z}</annotation> </semantics> </math> </foreignObject> <foreignObject x="384.333333" y="215" id="svg_39887_10" font-size="16" width="92" height="24"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mn>1</mn> <mi>w</mi> </msub> <mo>⊗</mo> <msub> <mi>a</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> </msub> </mrow> <annotation encoding="application/x-tex">1_w\otimes a_{x,y,z}</annotation> </semantics> </math> </foreignObject> <foreignObject id="svg_39887_21" height="24" width="72" font-size="16" y="280" x="214.666667"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <msub> <mi>a</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>x</mi> <mo>⊗</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> </msub> </mrow> <annotation encoding="application/x-tex">a_{w,x\otimes y,z}</annotation> </semantics> </math> </foreignObject> </g> </svg> \end{svg}

Created on May 3, 2013 23:57:31 by Urs Schreiber (150.212.93.134)