nLab terminal geometric morphism

Redirected from "terminal geometric morphisms".
Contents

Context

Topos Theory

topos theory

Background

Toposes

Internal Logic

Topos morphisms

Extra stuff, structure, properties

Cohomology and homotopy

In higher category theory

Theorems

(,1)(\infty,1)-Topos Theory

(∞,1)-topos theory

structures in a cohesive (∞,1)-topos

Contents

For the time being, the following speaks in \infty -topos theory, for definiteness; but all statements and proofs apply verbatim also to Grothendieck toposes, since they just depend on general abstract category-theoretic properties.

Idea

For H\mathbf{H} an \infty -topos over the base Grpd Grpd_\infty , it has an essentially unique geometric morphism to Grpd Grpd_\infty

(1)HΓLConstGrpd \mathbf{H} \underoverset {\underset{\Gamma}{\longrightarrow}} {\overset{LConst}{\longleftarrow}} {\;\;\;\;\bot\;\;\;\;} Grpd_\infty

where:

In other words, Grpd Grpd_\infty is the terminal object in the \infty -category Topos Topos_\infty of \infty -stack ( , 1 ) (\infty,1) -toposes and \infty -geometric morphisms between these.

Properties

Proposition

The geometric morphism (1) exists essentially uniquely.

(e.g. Lurie 2009, HTT 6.3.4.1)
Proof

Since every \infty -groupoid is an \infty -colimit (over itself) of the point (see there):

(2)SlimS* S \,\simeq\, \underset{\underset{S}{\longrightarrow}}{\lim} \,\ast

and since the inverse image of a geometric morphism preserves finite limits (by definition), such as the terminal object, and all \infty -colimits (since left adjoints preserve colimits), we have that LConstLConst must be given by forming the corresponding \infty-colimit of copies of the terminal object * H\ast_{\mathbf{H}} in H\mathbf{H}, which does exist:

LConst(S) LConst(limS*) limSLConst(*) limS* H \begin{aligned} LConst(S) & \;\simeq\; LConst \Big( \underset{ \underset{S}{\longrightarrow} }{\lim} \, \ast \Big) \\ & \;\simeq\; \underset{ \underset{S}{\longrightarrow} }{\lim} \, LConst \big( \ast \big) \\ & \;\simeq\; \underset{ \underset{S}{\longrightarrow} }{\lim} \, \ast_{\mathbf{H}} \end{aligned}

Proposition

The direct image of the terminal geometric morphism (1) is given by the hom-space out of the terminal object, in that for XHX \,\in\, \mathbf{H} there is a natural equivalence

Γ(X)H(* H,X), \Gamma (X) \;\simeq\; \mathbf{H}(\ast_{\mathbf{H}} ,\, X) \,,

where * HH\ast_{\mathbf{H}} \,\in\, \mathbf{H} denotes the terminal object.

Proof

For all SGrpd S \,\in\, Grpd_\infty we have the following sequence of natural equivalences:

Grpd (S,H(* H,X)) Grpd (limS*,H(* H,X)) limSGrpd (*,H(* H,X)) limSH(* H,X) H(limS* H,X) H(limSLConst(*),X) H(LConst(limS*),X) H(LConst(S),X) \begin{array}{lll} Grpd_\infty \big( S ,\, \mathbf{H}(\ast_{\mathbf{H}} ,\, X) \big) & \;\simeq\; Grpd_\infty \Big( \underset{\underset{S}{\longrightarrow}}{\lim} \ast ,\, \mathbf{H}(\ast_{\mathbf{H}} ,\, X) \Big) \\ & \;\simeq\; \underset{\underset{S}{\longleftarrow}}{\lim} \, Grpd_\infty \big( \ast ,\, \mathbf{H}(\ast_{\mathbf{H}} ,\, X) \big) \\ & \;\simeq\; \underset{\underset{S}{\longleftarrow}}{\lim} \, \mathbf{H}(\ast_{\mathbf{H}} ,\, X) \\ & \;\simeq\; \mathbf{H} \Big( \underset{\underset{S}{\longleftarrow}}{\lim} \ast_{\mathbf{H}} ,\, X \Big) \\ & \;\simeq\; \mathbf{H} \Big( \underset{\underset{S}{\longleftarrow}}{\lim} \, LConst(\ast) ,\, X \Big) \\ & \;\simeq\; \mathbf{H} \Big( LConst \big( \underset{\underset{S}{\longleftarrow}}{\lim} \ast \big) ,\, X \Big) \\ & \;\simeq\; \mathbf{H} \big( LConst(S) ,\, X \big) \end{array}

(Here we used (2) and that hom-functor preserves limits and that left adjoints preserve colimits and that LConstLConst preserves finite limits such as the terminal object, by definition.)

But this is a hom-equivalence which exhibits (see here) H(*,)\mathbf{H}(\ast,-) as a right adjoint \infty -functor to LConstLConst. This implies the claim by essential uniqueness of adjoints.

Literature

For discussion in plain topos theory see any of the references listed there.

Discussion in \infty -topos theory includes:

Last revised on May 26, 2023 at 14:05:00. See the history of this page for a list of all contributions to it.