Background
Basic concepts
equivalences in/of -categories
Universal constructions
Local presentation
Theorems
Extra stuff, structure, properties
Models
(2,1)-quasitopos?
structures in a cohesive (∞,1)-topos
The notion of Postnikov tower in an -category is the generalization of the notion of Postnikov tower from the archetypical (∞,1)-category Top ∞Grpd to more general -categories.
For a presentable (∞,1)-category the subcategory of n-truncated objects is a reflective (∞,1)-subcategory
This is (Lurie, prop. 5.5.6.18).
We write
for the corresponding localization. For , we say that is the -truncation of .
The reflector of the reflective embedding provides morphisms
from each object to its -truncation.
This is HTT, def. 5.5.6.23.
A Postnikov pretower is a pre-tower
(no initial on the left!) which exhibits each as the -truncation of .
We say Postnikov towers converge in the ambient (∞,1)-category if the forgetful (∞,1)-functor from Postnikov towers to Postnikov pretowers is an equivalence of (∞,1)-categories.
This is (Lurie, def. 5.5.6.23).
When the archetypical (∞,1)-topos ∞Grpd is presented by the model structure on simplicial sets, truncation is given by the the coskeleton endofunctor on sSet.
The unit of the adjunction
sends an -groupoid modeled as a Kan complex simplicial set to its -truncation.
Discussion of this can be found for instance in
William Dwyer, Dan Kan, An obstruction theory for diagrams of simplicial sets (pdf)
John DuskinSimplicial matrices and the nerves of weak -categories I: Nerves of bicategories , TAC 9 no. 2, (2002). (web)
…
The Postnikov tower of a connective E-∞ ring is a sequence of square-zero extensions. See Basterra 99 and Lurie “Higher Algebra”, section 8.4 (the result is due to Kriz).
(A special case of the above:) The Postnikov tower of a simplicial commutative ring is a sequence of square-zero extensions. See Toen-Vezzosi.
We discuss conditions that ensure that Postnikov towers converge.
In an (∞,1)-topos which is locally of finite homotopy dimension, Postnikov towers converge.
This is (Lurie, prop. 7.2.1.10).
At least if the ambient -category is a locally contractible (∞,1)-topos , so that there is a notion of structured path ∞-groupoid-functor , the homotopy fibers of the morphisms into the Postnikov tower of form the
In the context of nonabelian cohomology in (∞,1)-toposes the fact that we have Postnikov towers has been called the Whitehead principle of nonabelian cohomology.
Section 6.5…
For -rings: section 7.4 of
and in more classical language, section 8 of
M. Basterra?, Andre-Quillen cohomology of commutative S-algebras, J. Pure Appl. Algebra 144 (1999), no. 2, 111–143.
Igor Kriz, Towers of -ring spectra with an application to BP, preprint, 1993.
For simplicial commutative rings,
Last revised on March 15, 2015 at 21:05:18. See the history of this page for a list of all contributions to it.