Lecture 2, Wed 26. 11. 2011. at 16 00 (exactly!) Math, room 002; lec 1, lec 3. UNDER CONSTRUCTION
This lecture will continue about the cocycle description of locally trivial principal bundles and fiber bundles. We will also spend a bit of time on the special case of covering spaces. We sketch the concept, theorem of existence and construction of classifying spaces. Best references are Husemoller, Fibre bundles, but I have used also Postnikov and Switzer.
All bundles given in this lecture will be locally trivial.
Let be two topological spaces and be coverings of respectively and 1-cocycles with values in . A morphism of cocycles is a a pair of a map and a rule which to each pair assigns a map satisfying
for all .
(Need also the composition of cocycles)
Let and be two (locally trivial) principal -bundles corresponding to cocycles respectively. Recall that a map is a pair of maps of topological spaces and , such that is -equivariant and .
is viewed as the space of equivalence classes .
We define
Then . On the other hand, . Therefore, for all , i.e. is a morphism of cocycles.
Za zadanu kategoriju , i objekt u , je kontravarijantan funktor, tj. funktor . Funktore oblika , i njima izomorfne nazivamo reprezentabilni funktori. Ako znamo reprezentabilan funktor , onda znamo i , do na izomorfizam. Preslikavanje koje šalje objekt u njemu pridruženi reprezentabilni funktor se može proširiti do kovartijantnog funktora , iz kategorije u kategoriju predsnopova, tj. u kojeg nazivamo Yonedino ulaganje (Yoneda embedding). Slaba Yonedina lema kaže da je taj funktor vjeran i potpun (drugim riječima, ulaganje kategorija).
Funktori koji su reprezentabilni obično su posebno važni. U slučaju kad se radi o nekim tipičnim klasama primjera, npr. o homotopskoj kategoriji neke kategorije prostora , tada reprezentirajući objekt nekog funktora često nazivamo klasificirajući objekt/prostor, tj. ako je onda je klasificirajući objekt za . Za nas je važan slučaj kad je funktor koji nekom parakompaktnom Hausdorffovom prostoru zadaje skup klasa izomorfizama lokalno trivijalnih glavnih -svežnjeva nad . Pokazuje se da taj funktor ima klasificirajući prostor. Slično imamo i za slučaj vektorskih svežnjeva.
– first generalities on representing functors, universal elements etc.
Then existence of classifying spaces for principal bundles and associated bundles.
General existence: from E. Brown’s representability theorem.
More specific construction: Milnor’s construction via infinite join.
Even more specific construction (in a special case) via Grassman and Stiefel manifolds and the idea of Gauss map.
Prerequisites to cover: crash course on CW-complexes.
Mention Dold’s theorem. As a consequence any locally trivial fiber bundle over a paracompact Hausdorff space is a Serre fibration (the direct proof is easier than the Dold’s theorem). Over general spaces one has only a Hurewicz fibration.
Brown’s representability theorem:
Let be a contravariant functor from the homotopy category of connected pointed CW-complexes to the category of pointed sets which sends small colimits to small limits, or equivalently, satisfies
(i) wedge (sum) axiom: let be a family of objects and , be the canonical inclusions; then induce a map . The wedge axiom requires that this map is an isomorphism (here this means bijection).
(ii) Mayer-Vietoris axiom: Let be CW-subcomplexes, and a CW-subcomplex of and (we say that is a CW-triad). Let be the natural inclusions. Let and be such that . Then there exist such that and .
Then is representable.
One can apply this to the functor which assigns the principal -bundles to a CW-complex.
Last revised on February 29, 2012 at 22:53:33. See the history of this page for a list of all contributions to it.