Background
Basic concepts
equivalences in/of $(\infty,1)$-categories
Universal constructions
Local presentation
Theorems
Extra stuff, structure, properties
Models
For $C$ an (∞,1)-category and $X \in C$ an object, the over-$(\infty,1)$-category or slice $(\infty,1)$-category $C_{/X}$ is the $(\infty,1)$-category whose objects are morphism $p : Y \to X$ in $C$, whose morphisms $\eta : p_1 \to p_2$ are 2-morphisms in $C$ of the form
hence 1-morphisms $f$ as indicated together with a homotopy $\eta \colon p_2 \circ f \stackrel{\simeq}{\to} p_1$; and generally whose n-morphisms are diagrams
in $C$ of the shape of the cocone under the $n$-simplex that take the tip of the cocone to the object $X$.
This is the generalization of the notion of over-category in ordinary category theory.
We give the definition in terms of the model of (∞,1)-categories in terms of quasi-categories.
Recall from join of quasi-categories that there are two different but quasi-categorically equivalent definitions of join, denoted $\star$ and $\diamondsuit$. Accordingly we have the following two different but quasi-categoricaly equivalent definitions of over/under quasi-categories.
Let $C$ be a quasi-category. let $K$ be any simplicial set and let
be an (∞,1)-functor – a morphism of simplicial sets.
The under-quasi-category $C_{F/}$ is the simplicial set characterized by the property that for any other simplicial set $S$ there is a natural bijection of hom-sets
where $i_{K,S} : K \to K \star S$ is the canonical inclusion of $K$ into its join of simplicial sets with $S$.
Similarly, the over quasi-category over $F$ is the simplicial set characterized by the property that
naturally in $S$, where $j_{K,S}$ is the canonical inclusion map $K\to S\star K$.
The functor
with $\diamondsuit$ denoting the other definition of join of quasi-categories (as described there)
has a right adjoint
and its image $C^{F/}$ is another definition of the quasi-category under $F$.
The first definition in terms of the the mapping property is due to Andre Joyal. Together with the discussion of the concrete realization it appears as HTT, prop 1.2.9.2. The second definition appears in HTT above prop. 4.2.1.5.
The simplicial sets $C_{/F}$ and $C_{F/}$ are indeed themselves again quasi-categories.
This appears as HTT, prop. 1.2.9.3
The two definitions yield equivalent results in that the canonical morphism
is an equivalence of quasi-categories.
This is HTT, prop. 4.2.1.5
From the formula
we see that
an object in the over quasi-category $C_{/F}$ is a cone over $F$;.
For instance if $K = \Delta[1]$ then an object in $C_{/F}$ is a 2-cell
in $C$.
a morphism in $C_{/F}$ is a morphism of cones,
etc:.
So we may think of the overcategory $C_{/F}$ as the quasi-category of cones over $F$. Accordingly we have that
the terminal object in $C_{/F}$ is (if it exists) the limit in $C$ over $F$;
the initial object in $C_{F/}$ is (if it exists) the colimit of $F$ in $C$.
For $C = N(\mathcal{C})$ (the nerve of) an ordinary category $\mathcal{C}$ and $K = *$, this construction coincides with the ordinary notion of overcategory $\mathcal{C}/F$ in that there is a canonical isomorphism of simplicial sets
This appears as HTT, remark 1.2.9.6.
If $q : C \to D$ is a categorical equivalence then so is the induced morphism $C_{/F} \to D_{/q F}$.
This appears as HTT, prop 1.2.9.3.
For $C$ a quasi-category and $p : X \to C$ any morphism of simplicial sets, the canonical morphisms
and
are both left Kan fibrations.
This is a special case of HTT, prop 2.1.2.1 and prop. 4.2.1.6.
Let $v \colon K \to \tilde K$ be a map of small (∞,1)-categories, $\mathcal{C}$ an $(\infty,1)$-category, $\tilde{p}: \tilde{K} \to \mathcal{C}$ and $p = \tilde{p}v$. The induced (∞,1)-functor between slice $(\infty,1)$-categories
is an equivalence of (∞,1)-categories for each diagram $\tilde{p}$ precisely if $v$ is an op-final (∞,1)-functor (hence if $v^{op}$ is final).
This is (Lurie, prop. 4.1.1.8).
For $C$ an (∞,1)-category and $X \in C$ an object in $C$ and $f : A \to X$ and $g : B \to X$ two objects in $C/X$, the hom-∞-groupoid $C/X(f,g)$ is equivalent to the homotopy fiber of $C(A,B) \stackrel{g_*}{\to} C(A,X)$ over the morphism $f$: we have an (∞,1)-pullback diagram
This is HTT, prop. 5.5.5.12.
The forgetful functor $\mathcal{C}_{/X} \to \mathcal{C}$ out of a slice (dependent sum) reflects (∞,1)-colimits:
Let $f \colon K \to \mathcal{C}_{/X}$ be a diagram in the slice of an (∞,1)-category $\mathcal{C}$ over an object $X \in \mathcal{C}$. Then if the composite $K \stackrel{f}{\to} \mathcal{C}_{/X} \to \mathcal{C}$ has an (∞,1)-colimit, then so does $f$ itself and the projection $\mathcal{C}_{/q} \to \mathcal{C}$ takes the latter to the former. Conversely, a cocone $K \star \Delta^0 \to \mathcal{C}_{/X}$ under $f$ is an (∞,1)-colimit of $f$ precisely if the composite $K \star \Delta^0 \to \mathcal{C}_{/X} \to \mathcal{C}$ is an $(\infty,1)$-colimit of the projection of $f$.
This appears as (Lurie, prop. 1.2.13.8).
On the other hand (∞,1)-limits in the slice are computed as limits over the diagram with the slice-cocone adjoined:
For $\mathcal{C}$ an (∞,1)-category, $X \;\colon\; \mathcal{D} \longrightarrow \mathcal{C}$ a diagram, $\mathcal{C}_{/X}$ the comma category (the over-$\infty$-category if $\mathcal{D}$ is the point) and $F \;\colon\; K \to \mathcal{C}_{/X}$ a diagram in the comma category, then the (∞,1)-limit $\underset{\leftarrow}{\lim} F$ in $\mathcal{C}_{/X}$ coincides with the limit $\underset{\leftarrow}{\lim} F/X$ in $\mathcal{C}$.
For a proof see at (∞,1)-limit here.
(sliced adjoints)
Let
be a pair of adjoint functors (adjoint ∞-functors), where the category (∞-category) $\mathcal{C}$ has all pullbacks (homotopy pullbacks).
Then:
For every object $b \in \mathcal{C}$ there is induced a pair of adjoint functors between the slice categories (slice ∞-categories) of the form
where:
$L_{/b}$ is the evident induced functor (applying $L$ to the entire triangle diagrams in $\mathcal{C}$ which represent the morphisms in $\mathcal{C}_{/b}$);
$R_{/b}$ is the composite
of
the evident functor induced by $R$;
the (homotopy) pullback along the $(L \dashv R)$-unit at $b$ (i.e. the base change along $\eta_b$).
For every object $b \in \mathcal{D}$ there is induced a pair of adjoint functors between the slice categories of the form
where:
$R_{/b}$ is the evident induced functor (applying $R$ to the entire triangle diagrams in $\mathcal{D}$ which represent the morphisms in $\mathcal{D}_{/b}$);
$L_{/b}$ is the composite
of
the evident functor induced by $L$;
the composition with the $(L \dashv R)$-counit at $b$ (i.e. the left base change along $\epsilon_b$).
(in 1-category theory)
Recall that (this Prop.) the hom-isomorphism that defines an adjunction of functors (this Def.) is equivalently given in terms of composition with
the adjunction unit $\;\;\eta_c \colon c \xrightarrow{\;} R \circ L(c)$
the adjunction counit $\;\;\epsilon_d \colon L \circ R(d) \xrightarrow{\;} d$
as follows:
Using this, consider the following transformations of morphisms in slice categories, for the first case:
(1a)
(2a)
(2b)
(1b)
Here:
(1a) and (1b) are equivalent expressions of the same morphism $f$ in $\mathcal{D}_{/L(b)}$, by (at the top of the diagrams) the above expression of adjuncts between $\mathcal{C}$ and $\mathcal{D}$ and (at the bottom) by the triangle identity.
(2a) and (2b) are equivalent expression of the same morphism $\tilde f$ in $\mathcal{C}_{/b}$, by the universal property of the pullback.
Hence:
starting with a morphism as in (1a) and transforming it to $(2)$ and then to (1b) is the identity operation;
starting with a morphism as in (2b) and transforming it to (1) and then to (2a) is the identity operation.
In conclusion, the transformations (1) $\leftrightarrow$ (2) consitute a hom-isomorphism that witnesses an adjunction of the first claimed form (1).
The second case follows analogously, but a little more directly since no pullback is involved:
(1a)
(2)
(1b)
In conclusion, the transformations (1) $\leftrightarrow$ (2) consitute a hom-isomorphism that witnesses an adjunction of the second claimed form (2).
(left adjoint of sliced adjunction forms adjuncts)
The sliced adjunction (Prop. ) in the second form (2) is such that the sliced left adjoint sends slicing morphism $\tau$ to their adjuncts $\widetilde{\tau}$, in that (again by this Prop.):
The two adjunctions in admit the following joint generalisation, which is proven HTT, lem. 5.2.5.2. (Note that the statement there is even more general and here we only use the case where $K = \Delta^0$.)
(sliced adjoints)
Let
be a pair of adjoint ∞-functors, where the ∞-category $\mathcal{C}$ has all homotopy pullbacks. Suppose further we are given objects $c \in \mathcal{C}$ and $d \in \mathcal{D}$ together with a morphism $\alpha: c \to R(d)$ and its adjunct $\beta:L(c) \to d$.
Then there is an induced a pair of adjoint ∞-functors between the slice ∞-categories of the form
where:
$L_{/c}$ is the composite
of
the evident functor induced by $L$;
the composition with $\beta:L(c) \to d$ (i.e. the left base change along $\beta$).
$R_{/d}$ is the composite
of
the evident functor induced by $R$;
the homotopy along $\alpha:c \to R(d)$ (i.e. the base change along $\alpha$).
over-(∞,1)-category
Section 1.2.9 of
Last revised on July 9, 2022 at 16:46:42. See the history of this page for a list of all contributions to it.