tangent cohesive (∞,1)-topos


Cohesive \infty-Toposes

cohesive topos

cohesive (∞,1)-topos

cohesive homotopy type theory



Presentation over a site

Structures in a cohesive (,1)(\infty,1)-topos

structures in a cohesive (∞,1)-topos

Structures with infinitesimal cohesion

infinitesimal cohesion?


Stable Homotopy theory



The tangent (∞,1)-category THT\mathbf{H} to a cohesive (∞,1)-topos is itself cohesive: the tangent cohesive (∞,1)-topos.

This THT \mathbf{H} is the \infty-topos of parameterized spectra in H\mathbf{H}, hence is the context for cohesive stable homotopy theory.


Stable extension of cohesion

Let H\mathbf{H} be a cohesive (∞,1)-topos.

By the discussion at tangent ∞-category – Examples – Of an ∞-topos the tangent \infty-topos THT \mathbf{H} constitutes an extension of H\mathbf{H} by its stabilization Stab(H)Stab(\mathbf{H}):

Stab(H) coDisc seqΓ seqDisc seqLΠ seq Stab(Grpd)Spectra T *H T *Grpd incl incl H Ω totd TH coDisc seqΓ seqDisc seqLΠ seq TGrpd base 0 base 0 H coDiscΓDiscΠ Grpd. \array{ && Stab(\mathbf{H}) & \stackrel{\overset{L\Pi^{seq}}{\longrightarrow}}{\stackrel{\overset{Disc^{seq}}{\leftarrow}}{\stackrel{\overset{\Gamma^{seq}}{\longrightarrow}}{\underset{coDisc^{seq}}{\leftarrow}}}} & Stab(\infty Grpd) \simeq Spectra \\ && \simeq && \simeq \\ && T_\ast \mathbf{H} && T_\ast \infty Grpd \\ && \downarrow^{\mathrlap{incl}} && \downarrow^{\mathrlap{incl}} \\ \mathbf{H} &\stackrel{\overset{d}{\longrightarrow}}{\underset{\Omega^\infty \circ tot}{\leftarrow}}& T \mathbf{H} & \stackrel{\overset{L\Pi^{seq}}{\longrightarrow}}{\stackrel{\overset{Disc^{seq}}{\leftarrow}}{\stackrel{\overset{\Gamma^{seq}}{\longrightarrow}}{\underset{coDisc^{seq}}{\leftarrow}}}} & T \infty Grpd \\ && {}^{\mathllap{base}}\downarrow \uparrow^{\mathrlap{0}} && {}^{\mathllap{base}}\downarrow \uparrow^{\mathrlap{0}} \\ && \mathbf{H} & \stackrel{\overset{\Pi}{\longrightarrow}}{\stackrel{\overset{Disc}{\leftarrow}}{\stackrel{\overset{\Gamma}{\longrightarrow}}{\underset{coDisc}{\leftarrow}}}} & \infty Grpd } \,.


  • Ω tot:THH\Omega^\infty \circ tot \;\colon\; T \mathbf{H} \longrightarrow \mathbf{H} assigns the total space of a spectrum bundle;

    its left adjoint is the tangent complex functor;

  • base:THHbase \;\colon\; T \mathbf{H} \longrightarrow \mathbf{H} assigns the base space of a spectrum bundle;

    its left adjoint produces the 0-bundle;

    together these exhibit THT \mathbf{H} as an infinitesimal cohesive (infinity,1)-topos over H\mathbf{H}.

Stable homotopy types

In a tangent cohesive \infty-topos THT \mathbf{H} all the homotopy types in T *HTHT_\ast \mathbf{H} \hookrightarrow T\mathbf{H} are stable homotopy types.

Cohomology – Twisted bivariant generalized geometric cohomology theory

Where the (∞,1)-categorical hom-space in a general (∞,1)-topos constitute a notion of cohomology, those of a tangent (∞,1)-topos specifically constitute twisted generalized cohomology, in fact twisted bivariant cohomology.

For consider a spectrum object ET *HE \in T_\ast \mathbf{H} and write GL 1(E)Grp(H)GL_1(E) \in Grp(\mathbf{H}) for its ∞-group of units. Then the ∞-action of this on EE is (by the discussion there) exhibited by an object

(E//GL 1(E) BGL 1(E))T BGL 1(E)HTH. \left( \array{ E//GL_1(E) \\ \downarrow \\ \mathbf{B}GL_1(E) } \right) \;\;\; \in \;\;\; T_{\mathbf{B}GL_1(E)}\mathbf{H} \hookrightarrow T\mathbf{H} \,.

More generally, for Pic(E)HPic(E) \in \mathbf{H} the Picard ∞-groupoid of EE there is the universal (∞,1)-line bundle

(Pic(E)^Pic(E))TH. (\widehat{Pic(E)} \to Pic(E)) \in T \mathbf{H} \,.

Now for any object XHX \in \mathbf{H} we have the trivial sphere spectrum spectrum bundle over XX

X×𝕊(X×𝕊 X)T XHTH. X \times \mathbb{S} \simeq \left( \array{ X \times \mathbb{S} \\ \downarrow \\ X } \right) \;\;\; \in \;\;\; T_{X}\mathbf{H} \hookrightarrow T\mathbf{H} \,.

then morphisms in THT \mathbf{H} from the latter to the former

(X×𝕊 X)(E//GL 1(E) BGL 1(E)) \left( \array{ X \times \mathbb{S} \\ \downarrow \\ X } \right) \longrightarrow \left( \array{ E//GL_1(E) \\ \downarrow \\ \mathbf{B}GL_1(E) } \right)

are equivalently homotopy commuting diagrams of the form

X×𝕊 σ E//GL 1(E) X χ BGL 1(E) \array{ X \times \mathbb{S} &\stackrel{\sigma}{\longrightarrow}& E//GL_1(E) \\ \downarrow && \downarrow \\ X &\stackrel{\chi}{\longrightarrow}& \mathbf{B}GL_1(E) }

and hence

  1. a choice of twist of E-cohomology χ:XBGL 1(E)\chi \;\colon \; X \longrightarrow \mathbf{B}GL_1(E), modulating a GL 1(E)GL_1(E)-principal ∞-bundle;

  2. an element in the χ\chi-twisted EE-cohomology of XX, σE +χ(X,E)\sigma \in E^{\bullet + \chi}(X,E), hence a section of the associated (∞,1)-line bundle.

If we consider the internal hom instead of the external (∞,1)-categorical hom space then things work even more nicely and we can use just XX instead of X×𝕊X \times \mathbb{S}:


For XH0THX \in \mathbf{H} \stackrel{0}{\hookrightarrow} T \mathbf{H} a geometric homotopy type and EStab(H)T *HTHE \in Stab(\mathbf{H}) \simeq T_\ast \mathbf{H} \hookrightarrow T \mathbf{H} a spectrum object, then the internal hom/mapping stack

[X,E] THTH [X,E]_{T \mathbf{H}} \in T \mathbf{H}

(with respect to the Cartesian closed monoidal (∞,1)-category structure on the (∞,1)-topos is equivalently the mapping spectrum

[Σ X,E] Stab(H)Stab(H)TH, [\Sigma^\infty X, E]_{Stab(\mathbf{H})} \in Stab(\mathbf{H}) \hookrightarrow T \mathbf{H} \,,

in that

[X,E] TH[Σ X,E] Stab(H). [X,E]_{T \mathbf{H}} \simeq [\Sigma^\infty X,E]_{Stab(\mathbf{H})} \,.

Notice that as an object of THH seqT \mathbf{H} \hookrightarrow \mathbf{H}^{seq}, the object XX is the constant (∞,1)-presheaf on seqseq. By the formula for the internal hom in an (∞,1)-category of (∞,1)-presheaves we have

[X,E] H seq(X×,E). [X,E]_\bullet \simeq \mathbf{H}^{seq}(X \times \bullet, E) \,.

But since XX is constant the object X×X \times \bullet is for each object of seqseq the presheaf represented by that object. Therefore by the (∞,1)-Yoneda lemma it follows that

[X,E] [X,E ]. [X,E]_\bullet \simeq [X,E_\bullet] \,.

This is manifestly the same formula as for the mapping spectrum out of Σ X\Sigma^\infty X.

Similar kind of arguments give the following more general statement.


For XH0THX \in \mathbf{H} \stackrel{0}{\hookrightarrow} T \mathbf{H} a geometric homotopy type, for EE (H)E \in E_\infty(\mathbf{H}) an E-∞ ring with (Pic(E)^Pic(E))TH(\widehat{Pic(E)} \to Pic(E)) \hookrightarrow T \mathbf{H} its universal (∞,1)-line bundle over its Picard ∞-groupoid, then the internal hom/mapping stack

[X,Pic(E)^] THTH [X,\widehat{Pic(E)}]_{T \mathbf{H}} \in T \mathbf{H}

is the object whose

In full generality we may formulate the internal hom mapping space in THT \mathbf{H} in homotopy type theory notation as follows.



(a:A)E a:Spectra(H) (a \colon A) \;\vdash\; E_a \colon Spectra(\mathbf{H})


(b:B)F b:Spectra(H) (b \colon B) \;\vdash\; F_b \colon Spectra(\mathbf{H})

two spectrum bundle dependent types over base homotopy types, A,B:HA,B \colon \mathbf{H}, respectively, then the function type (EF):TH(E \to F) \colon T\mathbf{H} between them (regarded as homotopy types in THT \mathbf{H}) is

χ:(AB);σ:a:ASpMap(E a,F χ(a))a:AF χ(a). \chi \colon (A \to B); \sigma \colon \underset{a \colon A}{\prod} SpMap(E_a,F_{\chi(a)}) \;\vdash\; \underset{a \colon A}{\prod} F_{\chi(a)} \,.

Let (x:X)M x:Spectra(x:X)\vdash M_x : Spectra be another spectrum bundle. The cartesian product M×EM\times E in THT \mathbf{H} is then (x:X),(a:A)M xE a(x:X),(a:A) \vdash M_x \oplus E_a, with \oplus also the coproduct (hence the direct sum), since spectra are stable and hence additive. We compute the mapping space TH(M×E,F)T\mathbf{H}(M\times E,F) as follows:

(ϕ:X×AB) ((x,a):X×A)SpMap(M xE a,F ϕ(x,a)) = (ϕ:XAB) (x:X) (a:A)SpMap(E a,F ϕ(x,a))×SpMap(M x,F ϕ(x,a)) = (x:X) (χ:AB)( (a:A)SpMap(E a,F χ(a)))×( (a:A)SpMap(M x,F χ(a))) = (x:X) ψ: (χ:AB) (a:A)SpMap(E a,F χ(a))SpMap(M x, (a:A)F pr 1(ψ)(a)) = ρ:X (χ:AB) (a:A)SpMap(E a,F χ(a)) (x:A)SpMap(M x, (a:A)F pr 1(ρ(x))(a)) \begin{aligned} \sum_{(\phi:X\times A \to B)} \prod_{((x,a):X\times A)} SpMap(M_x\oplus E_a,F_{\phi(x,a)}) &=& \sum_{(\phi:X \to A \to B)} \prod_{(x:X)} \prod_{(a:A)} SpMap(E_a,F_{\phi(x,a)}) \times SpMap(M_x,F_{\phi(x,a)})\\ &=& \prod_{(x:X)} \sum_{(\chi:A \to B)} \left(\prod_{(a:A)} SpMap(E_a,F_{\chi(a)})\right) \times \left( \prod_{(a:A)} SpMap(M_x,F_{\chi(a)}) \right)\\ &=& \prod_{(x:X)} \sum_{\psi : \sum_{(\chi:A \to B)} \prod_{(a:A)} SpMap(E_a,F_{\chi(a)})} SpMap\left(M_x, \prod_{(a:A)} F_{pr_1(\psi)(a)}\right)\\ &=& \sum_{\rho : X \to \sum_{(\chi:A \to B)} \prod_{(a:A)} SpMap(E_a,F_{\chi(a)})} \prod_{(x:A)} SpMap\left(M_x, \prod_{(a:A)} F_{pr_1(\rho(x))(a)}\right) \end{aligned}

In the first line, we curry ϕ\phi, apply the induction principle for dependent maps out of X×AX\times A, and also apply the universal property of the coproduct M xE aM_x \oplus E_a. In the second line, we apply the universal property for mapping into Σ-types (the “type-theoretic axiom of choice”) and also that for dependent functions into a product. In the third line we apply the associativity of Σ-types, and also the universal property for mapping into the dependent product \prod of spectra. Finally, in the fourth line, we apply the type-theoretic axiom of choice again in the other direction. The resulting type is the mapping space from MM to the claimed function type (EF)(E\to F) defined above. (See also this discussion.)


We have the following special cases of prop. 3.

  1. If E a=0E_a = 0 for all a:Aa \colon A, and if B=*B = \ast, then the function type is

    a:AF \vdash \; \underset{a \colon A}{\prod} F

    which reproduces the mapping spectrum SpMap(Σ A,F)SpMap(\Sigma^\infty A, F) from prop. 1.

  2. If A=B=*A = B = \ast then then the mapping type is

    σ:SpMap(E,F)F:Spectra \sigma \colon SpMap(E,F) \;\vdash \; F \colon Spectra
  3. If E a=0E_a = 0 for all a:Aa \colon A and F b=0F_b = 0 for all b:Bb \colon B then the mapping type is

    χ:(AB)0:Spectra. \chi \colon (A \to B)\;\vdash \; 0 \colon Spectra \,.

Cohesive and differential refinement

Let THT\mathbf{H} be a tangent cohesive (,1)(\infty,1)-topos and write T *HT_\ast \mathbf{H} for the stable (∞,1)-category of spectrum objects inside it.


For every AT *HA \in T_\ast \mathbf{H} the naturality square

A A/A (pb) Π(A) Π(A/A) \array{ A &\stackrel{}{\longrightarrow}& A/\flat A \\ \downarrow &{}^{(pb)}& \downarrow \\ \Pi(A) &\stackrel{}{\longrightarrow}& \Pi(A/\flat A) }

(of the shape modality applied to the homotopy cofiber of the counit of the flat modality) is an (∞,1)-pullback square.

This was observed in (Bunke-Nikolaus-Völkl 13). It is an incarnation of a fracture theorem.


By cohesion and stability we have the diagram

A A A/A Π(A) Π(A) Π(A/A) \array{ \flat A &\longrightarrow & A &\stackrel{}{\longrightarrow}& A/\flat A \\ \downarrow^{\mathrlap{\simeq}} && \downarrow && \downarrow \\ \Pi(\flat A) &\longrightarrow& \Pi(A) &\stackrel{}{\longrightarrow}& \Pi(A/\flat A) }

where both rows are homotopy fiber sequences. By cohesion the left vertical map is an equivalence. The claim now follows with the homotopy fiber characterization of homotopy pullbacks.


This means that in stable cohesion every cohesive stable homotopy type is in controled sense a cohesive extension/refinement of its geometric realization geometrically discrete (“bare”) stable homotopy type by the non-discrete part of its cohesive structure;

In particular, A/AA/\flat A may be identified with differential cycle data. Indeed, by stability and cohesion it is the flat de Rham coefficient object

A/A= dRΣA A/\flat A = \flat_{dR}\Sigma A

of the suspension of AA, and the map to this quotient is thus the Maurer-Cartan form θ A\theta_A. So

A θ A dRΣA (pb) Π(A) Π(A/A) \array{ A &\stackrel{\theta_A}{\longrightarrow}& \flat_{dR}\Sigma A \\ \downarrow &{}^{(pb)}& \downarrow \\ \Pi(A) &\stackrel{}{\longrightarrow}& \Pi(A/\flat A) }

exhibits AA as a differential cohomology-coefficient of the generalized cohomology theory Π(A)\Pi(A).

It follows by the discussion at differential cohomology in a cohesive topos that the further differential refinement A^\widehat{A} of AA should be given by a further homotopy pullback

A^ Ω 1(,Lie(A)) (pb) A θ A dRΣA (pb) Π(A) Π(A/A). \array{ \widehat{A} &\longrightarrow& \Omega^1(-,Lie(A)) \\ \downarrow &{}^{(pb)}& \downarrow \\ A &\stackrel{\theta_A}{\longrightarrow}& \flat_{dR}\Sigma A \\ \downarrow &{}^{(pb)}& \downarrow \\ \Pi(A) &\stackrel{}{\longrightarrow}& \Pi(A/\flat A) } \,.

But of course by the generality of the above proposition, such an A^\widehat{A} sits itself again in its fracture-like pullback diagram.



For every AT *HA \in T_\ast \mathbf{H} the naturality square

(Π dRΣ 1A) Π dR(Σ 1A) A A \array{ \flat(\Pi_{dR} \Sigma^{-1} A) &\longrightarrow & \Pi_{dR}(\Sigma^{-1} A) \\ \downarrow && \downarrow \\ \flat A &\stackrel{}{\longrightarrow}& A }

(of the flat modality applied to the homotopy fiber of the unit of the shape modality) is an (∞,1)-pullback square.


As before but dually, the diagram extends to a morphism of homotopy cofiber diagrams of the form

(Π dRΣ 1A) Π dR(ΩA) A A Π(A) Π(A), \array{ \flat(\Pi_{dR} \Sigma^{-1} A) &\longrightarrow & \Pi_{dR}(\Omega A) \\ \downarrow && \downarrow \\ \flat A &\stackrel{}{\longrightarrow}& A \\ \downarrow && \downarrow \\ \flat \Pi(A) &\stackrel{\simeq}{\longrightarrow}& \Pi(A) } \,,

and by cohesion the bottom horizontal morphism is an equivalence.

Combining these two statements yields the following (Bunke-Nikolaus-Völkl 13).


For H\mathbf{H} a cohesive (∞,1)-topos every stable homotopy type AStab(H)THA \in Stab(\mathbf{H}) \hookrightarrow T \mathbf{H} sits inside a diagram of the form

Π dRΩA dRΣA θ A Π dRΩA A Π dRΣA Πθ A A ΠA, \array{ && \Pi_{dR} \Omega A && \longrightarrow && \flat_{dR}\Sigma A \\ & \nearrow & & \searrow & & \nearrow_{\mathrlap{\theta_A}} && \searrow \\ \flat \Pi_{dR} \Omega A && && A && && \Pi \flat_{dR}\Sigma A \\ & \searrow & & \nearrow & & \searrow && \nearrow_{\mathrlap{\Pi \theta_A}} \\ && \flat A && \longrightarrow && \Pi A } \,,

where the two squares are homotopy pullback squares and the two diagonals are the fiber sequences of the Maurer-Cartan form θ A\theta_A and its dual.


The bottom horizontal morphisms in the diagram in prop. 1 are the canonical points-to-pieces transform.


This kind of diagram under forming π 0\pi_0 has been traditionally known from ordinary differential cohomology and from differential K-theory, and had been used in proposals to axiomatize differential cohomology, see for instance (Bunke 12, prop. 4.57). Here we see that this holds fully generally for every stable cohesive homotopy type. If one still regards this diagram as characteristic of “differential” refinement it hence exhibits every cohesive stable type as a coefficients of some differential cohomology theory. This is a strong version of the synthetic notion “differential cohomology in a cohesive topos” . For more on this see also at smooth spectrum.


The idea of forming T *HT_\ast \mathbf{H} as a home for nontrivial stable homotopy types was originally suggested by Georg Biedermann and André Joyal, see section 35 of

and see the further references at tangent (infinity,1)-topos.

Discussion of differential cohomology in T *SmoothGrpdStab(SmoothGrpd)T_\ast Smooth \infty Grpd \simeq Stab(Smooth \infty Grpd) is in

The above discussion of geometric twisted generalized cohomology as cohomology in the tangent cohesive \infty-topos was presented in

Discussion in a comprehensive context of cohesion is in section 4.2.3 of













Revised on February 27, 2014 12:49:33 by Urs Schreiber (