nLab Rezk complete type

This article is about arbitrary types satisfying the Rezk completion condition in simplicial type theory. For synthetic pre-categories satisfying the Rezk completion condition, see Rezk type


Context

(,1)(\infty,1)-Category theory

Internal (,1)(\infty,1)-Categories

Directed homotopy type theory

Contents

Definition

In simplicial type theory, let iso A(x,y)\mathrm{iso}_A(x, y) be some notion of isomorphism.

Definition

A type AA is a Rezk complete type if the canonical function which by the J rule takes an identification of elements p:x= Ayp:x =_A y to an isomorphism J(λt.id A(t),x,y,p):iso A(x,y)J(\lambda t.\mathrm{id}_A(t), x, y, p):\mathrm{iso}_A(x, y) is an equivalence of types for all x:Ax:A and y:Ay:A.

isRezkComplete(A) x:A y:AisEquiv(λp.J(λt.id A(t),x,y,p))\mathrm{isRezkComplete}(A) \coloneqq \prod_{x:A} \prod_{y:A} \mathrm{isEquiv}(\lambda p.J(\lambda t.\mathrm{id}_A(t), x, y, p))

Equivalently, let 𝔼\mathbb{E} denote the free-standing isomorphism, for some notion of isomorphism. For example, the free-standing bi-invertible morphism 𝔼\mathbb{E} can be defined as a colimit on a diagram involving the simplicial interval 𝕀\mathbb{I} (see Sterling & Ye 2025). There is a unique function u 𝔼:𝔼𝕀 hu_\mathbb{E}:\mathbb{E} \to \mathbb{I}_h to the homotopical interval higher inductive type 𝕀 h\mathbb{I}_h by the universal property of the negative unit type and the equivalence of 𝕀 h\mathbb{I}_h with the negative unit type.

Definition

A type AA is a Rezk complete type if the canonical function

λf.fu 𝔼:(𝕀 hA)(𝔼A)\lambda f.f \circ u_\mathbb{E}:(\mathbb{I}_h \to A) \to (\mathbb{E} \to A)

is an equivalence of types

isRezkComplete(A)isEquiv(λf.fu 𝔼)\mathrm{isRezkComplete}(A) \coloneqq \mathrm{isEquiv}(\lambda f.f \circ u_\mathbb{E})

References

Last revised on June 8, 2025 at 20:06:19. See the history of this page for a list of all contributions to it.