Riemann curvature

For $(X,g)$ a Riemannian manifold let $\nabla_{g}$ be the corresponding Levi-Civita connection. The **Riemann curvature** $R_g$ of $(X,g)$ is the curvature $F_{\nabla_g}$ of $\nabla_g$:

$R_g := F_{\nabla_g}
\,.$

(…)

curvature in Riemannian geometry |
---|

Riemann curvature |

Ricci curvature |

scalar curvature |

sectional curvature |

p-curvature |

Last revised on April 25, 2018 at 03:16:44. See the history of this page for a list of all contributions to it.