nLab scalar curvature

Contents

Contents

Definition

For (X,e)(X,e) a (pseudo-)Riemannian manifold with smooth manifold XX and vielbein field ee, its scalar curvature is the smooth function

R(e)C (X,) R(e) \in C^\infty(X, \mathbb{R})

defined to be the trace of the Ricci tensor of ee

R(e)tr eRic(c). R(e) \coloneqq tr_e Ric(c) \,.

Examples

Example

For n >0n \in \mathbb{N}_{\gt 0} and r >0r \in \mathbb{R}_{\gt 0}, the Ricci tensor of the round n n -sphere S nS^n of radius rr satisfies

Ric(v,v)=n1r 2 Ric(v,v) \;=\; \frac{n-1}{r^2}

for all unit-length tangent vectors vTS nv \in T S^n, |v|=1{\vert v \vert} = 1.

Accordingly, the scalar curvature of the round n n -sphere of radius rr is the constant function with value

R=n(n1)r 2. \mathrm{R} \;=\; \frac{n(n-1)}{r^2} \,.

(e.g. Lee 2018, Cor. 11.20)

References

Most references listed at Riemannian geometry discuss scalar curvature, for instance

  • John M. Lee, Riemannian manifolds. An introduction to curvature, Graduate Texts in Mathematics 176 Springer (1997) [ISBN: 0-387-98271-X]

    second edition (retitled):

    John M. Lee, Introduction to Riemannian Manifolds, Springer (2018) [ISBN:978-3-319-91754-2, doi:10.1007/978-3-319-91755-9]

curvature in Riemannian geometry
Riemann curvature
Ricci curvature
scalar curvature
sectional curvature
p-curvature

Last revised on July 30, 2024 at 13:15:26. See the history of this page for a list of all contributions to it.