# nLab cartesian monoidal preordered object

Contents

## In higher category theory

category theory

#### Limits and colimits

limits and colimits

(0,1)-category

(0,1)-topos

# Contents

## Definition

In a finitely complete category $C$, a cartesian monoidal preordered object $X$ is a preordered object with internal preorder $R\stackrel{(s,t)}\hookrightarrow X \times X$ and a monoid object in $C$ with multiplication $(-)\wedge(-):X \times X \to X$ and a global unit $\top:* \to X$, where $*$ is the terminal object in $C$, with

• a function $\tau:(* \to X) \to (* \to R)$ such that for all global elements $a:* \to X$, $s \circ \tau(a) = a$ and $t \circ \tau(a) = \top$.

• functions

$\lambda_l:((* \to X) \times (* \to X)) \to (* \to R)$
$\lambda_r:((* \to X) \times (* \to X)) \to (* \to R)$

such that for all global elements $a:* \to X$ and $b:* \to X$, $s \circ \lambda_l(a,b) = a \wedge b$, $t \circ \lambda_l(a,b) = a$, $s \circ \lambda_r(a,b) = a \wedge b$, and $t \circ \lambda_r(a,b) = b$.