nLab coframe

Redirected from "polynomial endofunctor".
Contents

Context

Topos Theory

topos theory

Background

Toposes

Internal Logic

Topos morphisms

Extra stuff, structure, properties

Cohomology and homotopy

In higher category theory

Theorems

(0,1)(0,1)-Category theory

Contents

Idea

The notion of coframe is a generalization of the notion of category of closed subsets? of a topological space. A coframe is like a category of closed subsets in a space possibly more general than a topological space: a locale. This in turn is effectively defined to be anything that has a collection of closed subsets that behaves essentially like the closed subsets of a topological space do.

It is also the opposite poset of a frame.

Definition

Definition

A coframe 𝒞\mathcal{C} is

  • a poset

  • that has

  • and which satisfies the infinite distributive law:

    i(xy i)x( iy i) \bigwedge_i (x\vee y_i) \leq x \vee (\bigwedge_i y_i)

    for all x,{y i} ix, \{y_i\}_i in AA

    (Note that the converse holds in any case, so we have equality.)

A coframe homomorphism is a homomorphism of posets that preserves finite joins and arbitrary meets. Coframes and coframe homomorphisms form the category Cofrm.

See also

 References

  • Mamuka Jibladze, “Cosheaves, coframes, cotoposes: some new facts, some old questions” (web archive)

Last revised on July 4, 2024 at 15:11:52. See the history of this page for a list of all contributions to it.