on chain complexes/model structure on cosimplicial abelian groups
related by the Dold-Kan correspondence
on algebras over an operad, on modules over an algebra over an operad
on dendroidal sets, for dendroidal complete Segal spaces, for dendroidal Cartesian fibrations
on strict ∞-categories?
If $V$ is a monoidal model category, then in many cases there is a model category of $V$-enriched categories. This includes the model structure on simplicial categories and the model structure on dg-categories, for instance.
Let $V$ be a monoidal model category. The localization functor $\gamma: V \to Ho(V)$ is then a lax monoidal functor, and hence any $V$-category $C$ induces a $Ho(V)$-category $\gamma_\bullet C$. The homotopy category of a $V$-category $C$ is the underlying ordinary category $(\gamma_\bullet C)_o$. We say a $V$-functor $F:C\to D$ is locally X if each morphism $F:C(x,y) \to D(F x, F y)$ is X.
Define a $V$-functor $F:C\to D$ to be:
A weak equivalence if $\gamma_\bullet F :\gamma_\bullet C \to \gamma_\bullet D$ is an equivalence of $Ho(V)$-categories (that is, an internal equivalence in the 2-category of $Ho(V)$-categories). This is equivalent to asking that (1) $F$ is locally a weak equivalence, and (2) the ordinary functor $(\gamma_\bullet F)_o$ is essentially surjective.
A naive fibration if (1) $F$ is locally a fibration, and (2) $\gamma_\bullet F$ is an isofibration.
Define a $V$-category $C$ to be
By a theorem of Joyal, these weak equivalences and fibrant objects determine at most one model structure on the category $V Cat$. When it exists, it is called the (canonical, categorical) model structure on $V$-categories.
Usually, the fibrations between fibrant objects in this model structure are precisely the naive fibrations (although between non-fibrant objects, the two classes are distinct). Usually also, the trivial fibrations are precisely the weak equivalences that are also naive fibrations, which is to say the $V$-functors that are (1) locally trivial fibrations and (2) surjective on objects.
See the references for general conditions under which this model structure exists.
The model structure on simplicial categories which presents (∞,1)-categories is induced from the Quillen model structure on simplicial sets.
The model structure on simplicial categories which presents (∞,2)-categories is induced from the Joyal model structure on simplicial sets
The model structure on dg-categories is induced from the projective model structure on chain complexes.
The canonical model structure on Cat is induced from the trivial model structure on Set.
The canonical (Lack) model structure on $2 Cat$ is induced from the canonical model structure on $Cat$.
The canonical (Lack) model structure on Gray-categories is induced from the canonical model structure on $2 Cat$.
Jacob Lurie, Higher Topos Theory section A.3.2
Alexandru Stanculescu, “Constructing model categories with prescribed fibrant objects” (arXiv:1208.6005)
Clemens Berger, Ieke Moerdijk, On the homotopy theory of enriched categories (arXiv:1201.2134)