model structure on dg-Lie algebras


Model category theory

model category



Universal constructions


Producing new model structures

Presentation of (,1)(\infty,1)-categories

Model structures

for \infty-groupoids

for ∞-groupoids

for nn-groupoids

for \infty-groups

for \infty-algebras



for stable/spectrum objects

for (,1)(\infty,1)-categories

for stable (,1)(\infty,1)-categories

for (,1)(\infty,1)-operads

for (n,r)(n,r)-categories

for (,1)(\infty,1)-sheaves / \infty-stacks

\infty-Lie theory

∞-Lie theory (higher geometry)


Smooth structure

Higher groupoids

Lie theory

∞-Lie groupoids

∞-Lie algebroids

Formal Lie groupoids




\infty-Lie groupoids

\infty-Lie groups

\infty-Lie algebroids

\infty-Lie algebras



The model category structure on the category dgLie kdgLie_k of dg-Lie algebras over a commutative ring kk \supset \mathbb{Q} has

This is a simplicial model category with respect to the sSet-hom functor

dgLie(𝔤,𝔥):=([k]Hom dgLie(𝔤,Ω (Δ k)𝔥)), dgLie(\mathfrak{g}, \mathfrak{h}) := ([k] \mapsto Hom_{dgLie}(\mathfrak{g} , \Omega^\bullet(\Delta^k) \otimes\mathfrak{h})) \,,



Rectification resolution for L L_\infty-algebras

dg-Lie algebras with this model structure are a rectification of L-∞ algebras: for LieLie the Lie operad and Lie^\widehat Lie its standard cofibrant resolution, algebras over an operad over LieLie in chain complexes are dg-Lie algebras and algebras over Lie^\widehat Lie are L-∞ algebras and by the rectification result discussed at model structure on dg-algebras over an operad there is an induced Quillen equivalence

Alg(Lie^)Alg(Lie) Alg(\widehat Lie) \stackrel{\simeq}{\to} Alg(Lie)

between the model structure for L-∞ algebras which is transferred from the model structure on chain complexes (unbounded propjective) to the above model structure on chain complexes.

There is also a Quillen equivalence from the model structure on dg-Lie algebras to the model structure on dg-coalgebras. This is part of a web of Quillen equivalences that identifies dg-Lie algebra/L L_\infty-algebras with infinitesimal derived ∞-stacks (“formal moduli problems”). More on this is at model structure for L-∞ algebras.

Specifically, there is (Quillen 69) an adjunction

(i):dgLieidgCoCAlg (\mathcal{R} \dashv i) \;\colon\; dgLie \stackrel{\overset{\mathcal{R}}{\leftarrow}}{\underset{i}{\to}} dgCoCAlg

between dg-coalgebras and dg-Lie algebras, where the right adjoint is the (non-full) inclusion that regards a dg-Lie algebra as a differential graded coalgebra with co-binary differential, and where the left adjoint \mathcal{R} (“rectification”) sends a dg-coalgebra to a dg-Lie algebra whose underlying graded Lie algebra is the free Lie algebra on the underlying chain complex. Over a field of characteristic 0, this adjunction is a Quillen equivalence between the model structure for L-∞ algebras on dgCoCAlgdgCoCAlg and the model structure on dgLiedgLie (Hinich 98, theorem 3.2).

In particular, therefore the composite ii \circ \mathcal{R} is a resolution functor for L L_\infty-algebras.


The model structure on dg-Lie algebras goes back to appendix B of

  • Dan Quillen, Rational homotopy theory , Annals of Math., 90(1969), 205–295.

For more discussion see

and section 2.1 of

Review with discussion of homotopy limits and homotopy colimits is in

Revised on September 18, 2014 10:03:24 by Urs Schreiber (