homotopy theory, (∞,1)-category theory, homotopy type theory
flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed…
models: topological, simplicial, localic, …
see also algebraic topology
Introductions
Definitions
Paths and cylinders
Homotopy groups
Basic facts
Theorems
Monodromy is the name for the action of the homotopy groups of a space on fibers of covering spaces or locally constant ∞-stacks on .
We discuss monodromy of covering spaces in elementary point-set topology.
(monodromy of a covering space)
Let be a topological space and a covering space. Write for the fundamental groupoid of .
Define a functor
to the category Set of sets as follows:
to a point assign the fiber ;
to the homotopy class of a path connecting with in assign the function which takes to the endpoint of a path in which lifts through with starting point
This construction is well defined for a given representative due to the unique path-lifting property of covering spaces (this lemma) and it is independent of the choice of in the given homotopy class of paths due to the homotopy-lifting property (this lemma). Similarly, these two lifting properties give that this construction respects composition in and hence is indeed a functor.
Hence this defines a “permutation groupoid representation” of .
Given a homomorphism between two covering spaces , hence a continuous function which respects fibers in that the diagram
commutes, then the component functions
are compatible with the monodromy (def. ) along any path between points and from def. in that the following diagrams of sets commute
This means that induces a natural transformation between the monodromy functors of and , respectively, and hence that constructing monodromy is itself a functor from the category of covering spaces of to that of permutation representations of the fundamental groupoid of :
For any let be the unique path in with and . By definition we have
and hence
Now satisfies and by the fact that preserves fibers. Hence by uniqueness of path lifting (this lemma), is the unique lift of with starting point . By def. this means that
This is the equality to be shown.
(fundamental theorem of covering spaces)
The reconstruction of covering spaces from monodromy is an inverse functor to the monodromy functor. The resulting equivalence of categories
between the category of covering spaces and the permutation groupoid representations of the fundamental groupoid is known as the fundamental theorem of covering spaces.
(fundamental groupoid of covering space)
Let be a covering space.
Then the fundamental groupoid of the total space is equivalently the Grothendieck construction of the monodromy functor
whose
By the uniqueness of the path-lifting (this lemma) and the very definition of the monodromy functor.
Let be a path-connected topological space and let be a covering space. Then the total space is
path-connected precisely if the monodromy is a transitive action;
simply connected precisely if the monodromy is free action.
Let be a cohesive (∞,1)-topos and any object. Then the locally constant ∞-stacks on are represented by morphisms . By adjunction such morphisms are equivalent to (∞,1)-functors This morphism exhibits the monodromy of the locally constant ∞-stack.
Specifically, the restriction to the delooping of the loop space object at a chosen baspoint is the monodromy action of loops based at on the fiber of the locally constant -stack over .
Last revised on December 18, 2020 at 15:24:33. See the history of this page for a list of all contributions to it.