algebraic topology – application of higher algebra and higher category theory to the study of (stable) homotopy theory
symmetric monoidal (∞,1)-category of spectra
(…)
Paolo Salvatore: Configuration spaces with summable labels, in Cohomological methods in homotopy theory (Bellaterra, 1998), Progr. Math. 196, Birkhäuser (2001) 375–395 [doi:10.1007/978-3-0348-8312-2_23, arXiv:math/9907073]
Sadok Kallel: Particle Spaces on Manifolds and Generalized Poincaré Dualities, Quarterly J. Math. 52 1 (2001) 45–70 [doi:10.1093/qjmath/52.1.45, arXiv:math/9810067]
(the abelian case reducing to ordinary Poincaré duality)
Jacob Lurie, §3.8 in: Derived Algebraic Geometry VI: Algebras [arXiv:0911.0018]
Jacob Lurie, Nonabelian Poincaré Duality, Lecture 8 in Tamagawa Numbers via Nonabelian Poincare Duality (282y) (2014) [pdf, pdf]
Dennis Gaitsgory, Jacob Lurie: Nonabelian Poincaré Duality, section 3 in: Weil’s conjecture for function fields (2014-2017) [pdf, pdf]
David Ayala, John Francis, §4 in: Factorization homology of topological manifolds, Journal of Topology 8 4 (2015) 1045-1084 [arXiv:1206.5522, doi:10.1112/jtopol/jtv028]
Jacob Lurie, §5.5.6 in: Higher Algebra (2017) [pdf]
Jeremy Miller: Nonabelian Poincaré duality after stabilizing, Trans. Amer. Math. Soc. 367 (2015) 1969-1991 [doi:2015-367-03/S0002-9947-2014-06186-2, arXiv:1209.2773]
Foling Zou, §4 in: A geometric approach to equivariant factorization homology and nonabelian Poincaré duality, Math. Z. 303 98 (2023) [arXiv:2008.08234, doi:10.1007/s00209-023-03253-2]
(generalization to equivariant homotopy theory)
Further exposition:
The proof by Jacob Lurie and Dennis Gaitsgory via nonabelian Poincaré duality of the Weil conjecture on Tamagawa numbers was announced in
and details are at
Generalization via nonabelian Poincaré duality of stable splitting of mapping spaces from codomains which are -fold suspensions to general n-connective spaces:
Last revised on November 18, 2024 at 08:09:09. See the history of this page for a list of all contributions to it.