abstract duality: opposite category,
concrete duality: dual object, dualizable object, fully dualizable object, dualizing object
between higher geometry/higher algebra
Langlands duality, geometric Langlands duality, quantum geometric Langlands duality
Riemann integration, Lebesgue integration
line integral/contour integration
integration of differential forms
integration over supermanifolds, Berezin integral, fermionic path integral
Kontsevich integral, Selberg integral, elliptic Selberg integral
integration in ordinary differential cohomology
integration in differential K-theory
Poincaré duality over some space is an equivalence (if it exists) relating cohomology with homology on that space.
The canonical example is the Poincaré duality in ordinary cohomology $H^\bullet(X)$/ordinary homology $H_\bullet(X)$ which exists over an orientable closed manifold $X$ of dimension $n$: any choice of volume form $\omega$ induces by the cap product an isomorphism
More generally Poincaré duality is about dual objects in a generalized cohomology theory. For instance if $X$ above is furthermore K-oriented, hence oriented in the K-theory cohomology theory (hence if it has spin^c structure) then there is an isomorphism between its K-homology and K-theory. For more on this see at Poincaré duality algebra.
Poincaré duality is the mechanism behind Umkehr maps/push-forward in generalized cohomology: given a map of spaces $f \colon X \to Y$ which enjoy Poincaré duality with respect to some generalized cohomology theory $R$, one can pass from the canonically given pullback morphism
to the dual morphism
Here the duality is typically exhibited in two steps:
an Atiyah duality identifies the dual of $R^\bullet(X)$ with the $R$-cohomology of a Thom space of $X$;
a Thom isomorphism identified the $R$-cohomology of the Thom space back with that of $X$.
More generally, spaces $X$ are not self-dual in this way, but may at least be dual to themselves but equipped with a twist. This yields the twisted Umkehr maps in twisted cohomology (see for instance at Freed-Witten-Kapustin anomaly cancellation).
For more on this see at twisted Umkehr map.
We first state the
and then its
Around 1895 Henri Poincaré made an observation about Betti numbers of closed manifolds, which in the 1930s was then formulated by Eduard ?ech? and Hassler Whitney in the following modern form:
Let $X$ be a closed manifold of dimension $n$ that is orientable. Then the cap product with any choice of orientation – in the form of a fundamental class $[X] \in H_n(X)$ – induces isomorphisms of the form
between the ordinary cohomology and the ordinary homology groups of $X$.
Later this was turned around and more general topological spaces satisfying this condition were considered
A topological space for which there is $d \in \mathbb{N}$ and a class $[X] \in H_d(X)$ such that the cap product induces isomorphisms
is called a Poincaré duality space.
Traditionally Poincaré duality is stated as a duality of chain homology groups. The passage from chain complexes to their homology groups, hence the passage from full homotopy theory to just some invariants, however forgets a lot of information. But it turns out that this can always be lifted:
Let $X$ be a Poincaré duality space of dimension $n$, def. . Then there is a quasi-isomorphism
between the chain complex of ordinary cohomology of $X$ with that $d$-fold de-suspension of the chain complex of ordinary homology of $X$.
This is such that its image in chain homology is (up to sign) the traditional Poincaré duality isomorphism
This is (EM 11, theorem, 2.5.2).
Since $C^\bullet(X) \simeq [C_\bullet(X,), \mathbb{I}] \simeq (C_\bullet(X))^\vee$ is the dual object to $C_\bullet(X)$ in the (∞,1)-category of unbounded chain complexes, this says that for a Poincaré duality space $X$ the chain complex $C_\bullet(X)$ is almost a self-dual objects, except for a degree-shift, hence except for a twist of (itself) degree 0.
From [ALGTOP-L], Oct 5, 2010.
Any one have a reference for obstructions which detect whether a space whose cohomology has Poincare duality is actually a manifold? thanks
John Klein:
Ranicki’s total surgery obstruction does it in the top case, in surgery dimensions.
Nathanien Rounds:
I believe this question is answered (simply connected case, over Q) in Dennis Sullivan’s paper Infinitesmal Computations in Topology (Theorem 13.2). The answer, as I understand it, is that outside dimension 4k any graded commutative algebra over Q wtih first betti number 0 satisfying Poincare Duality can be realized as the cohomoloyg ring of a manifold. In dimension 4k there is an obstruction related to the signature which is given in that paper. There won’t in general be a unique manifold corresponding to the ring; for example one can choose different rational Pontragin classes and change the homemorphism type but not the cohomology.
The general answer (not simply connected, over Z) is given by Ranicki’s total surgery obstruction, as John Klein has already pointed out. One way to interpret this obstruction geometrically is that the Poincare duality map is always “local” but it need not have a “local” inverse, and the lack of a local inverse is an obstruction to having a anifold structure. See for example McCrory’s paper “A Characterization of Homology Manifolds” and also my thesis, which if you’re interested is here:
www.math.purdue.edu/~nrounds
See also (Ranicki 96) and see at Poincaré complex.
The Poincaré dual of a submanifold can be identified with the Thom class on its normal bundle
(…)
Given Poincare duality and hence (twisted-)self-dual objects, the induced dagger-structure allows torevert morphisms in cohomology. These “Umkehr maps” describe fiber integration in cohomology?.
The six operations of Grothendieck and Grothendieck duality are designed to ensure a generalized and relative versions of Poincaré duality and related phenomena in the setups like sheaf and topos theory, algebraic geometry. See Grothendieck duality for references.
Another generalization, for singular spaces, is with help of stratifications and via intersection cohomology.
This historical work of Henri Poincaré is reviewed around page 28. pf
Summaries of the traditional modern statement of Poincaré duality are for instance in
Manifold Atlas, Poincaré Duality Spaces
Discussion of generalizations to “chain duality” (see also at Poincare complex) is at
Discussion in etale cohomology is in
With an eye towards generalization in spectral geometry (spectral triples):
For finite groups
Michel Brion, Poincaré duality and equivariant (co)homology, Michigan mathematical journal, Volume 48, Issue 1 (2000), 1-624 (EUCLID)
Steven Costenoble, Stefan Waner, Equivariant ordinary homology and cohomology (arXiv:math/0310237)
Christopher Allday, Matthias Franz, Volker Puppe, Equivariant Poincaré-Alexander-Lefschetz duality and the Cohen-Macaulay property (arXiv:1303.1146)
Jean-Louis Tu, Twisted K-theory and Poincare duality (arXiv:0609556)
Heath Emerson, Ralf Meyer, Dualities in equivariant Kasparov theory, New York J. Math. 16 (2010), 245-313 (arXiv:0711.0025)
Heath Emerson, Duality, correspondences and the Lefschetz map in equivariant KK-theory: a survey (arXiv:0904.4744)
Poincaré duality on Hochschild (co)homology
M. Van den Bergh, A relation between Hochschild homology and cohomology for Gorenstein rings . Proc. Amer. Math. Soc. 126 (1998), 1345–1348; (JSTOR)
Correction: Proc. Amer. Math. Soc. 130 (2002), 2809–2810.
with more on that in
That this Poincare duality takes the Connes coboundary operator? to the BV operator is shown in
Poincaré duality on Deligne-Mumford stacks/orbifolds is discussed in
Dan Abramovich, Tom Graber, Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks (arXiv:math/0603151)
Weimin Chen, Yongbin Ruan, A New Cohomology Theory for Orbifold, Commun. Math. Phys. 248 (2004) 1-31 (arXiv:math/0004129)
For disucssion in noncommutative topology/KK-theory see at Poincaré duality algebra.
Poincaré duality is traditional considered on the level of cohomology groups. One may asks if it lifts to a duality on the underlying chain complexes.
Such “derived” Poincaré duality on the level of chain complexes is claimed in theorem 2.5.2 of
based on – or at least inspired by – the discussion in (section 10) of
The article
claims a chain duality (even of $A_\infty$-comodule chains but then possibly only exhibited by a bimodule) for the singular chain complex of any Poincaré duality topological space.
A review is in
Last revised on September 29, 2014 at 02:27:44. See the history of this page for a list of all contributions to it.