transfinite arithmetic, cardinal arithmetic, ordinal arithmetic
prime field, p-adic integer, p-adic rational number, p-adic complex number
arithmetic geometry, function field analogy
Objective number theory is the study of addition and multiplication (and eventually exponentiation) of objects in suitable categories. (Stephen Schanuel 2000, p.295)
John Baez, James Dolan, From finite sets to Feynman diagrams , pp.29-50 in Engquist, Schmid (eds.), Mathematics Unlimited - 2001 and Beyond , Springer Heidelberg 2001.
Andreas Blass, Seven trees in one, Journal of Pure and Applied Algebra, 103 1 (1995) 1–21 [arXiv:math/9405205, doi:10.1016/0022-4049(95)00098-H]
Marcelo Fiore, Tom Leinster, An Objective Representation of the Gaussian Integers , J. Symbolic Computation 37 no.6 (2004) pp.707-716. (arXiv)
Marcelo Fiore, Tom Leinster, Objects of categories as complex numbers, Advances in Mathematics 190 (2005) pp.264-277. (arXiv)
Robbie Gates, On the generic solution to in distributive categories , JPAA 125 (1998) pp.191-212.
Robbie Gates, On generic seperable objects , TAC 4 no.10 pp.208-248 (1998). (abstract)
F. William Lawvere, Qualitative Distinctions between some Toposes of Generalized Graphs , Cont. Math. 92 (1989) pp.261-299.
Matías Menni, Every Rig with a One-Variable Fixed Point Presentation is the Burnside Rig of a Prextensive Category , Appl. Cat. Struc. 25 (2017) pp.663-707.
Stephen Schanuel, Negative sets have Euler characteristic and dimension , Category theory. Proc. Int. Conf. Como/Italy 1990, LNM 1488 pp.379–385 (1991).
Stephen Schanuel, Objective number theory and the retract chain condition , JPAA 154 pp.295–298 (2000).
Stephen Schanuel, Transcendence in objective number theory , in Categorical studies in Italy, Perugia 1997. Suppl. Rend. Circ. Mat. Palermo, II. Ser. 43–48, 64 (2000).
Last revised on October 27, 2022 at 08:53:14. See the history of this page for a list of all contributions to it.