nLab promonad

Contents

Contents

Idea

A promonad or profunctor monad is a monad in the bicategory Prof of small categories, profunctors, and natural transformations.

The data of a promonad on a category CC is equivalently the data of an identity-on-objects functor from CC (known as the collapse of the promonad).

Examples

  • Every monad on a category CC induces a representable promonad on CC.
  • Every comonad on a category CC induces a corepresentable promonad on CC.

References

  • Maren Justesen, Bikategorien af Profunktorer, Aarhus 1968 (pdf)
  • Michel Thiébaud, Self-dual structure-semantics and algebraic categories, PhD thesis (1971)
  • Richard J. Wood, Proarrows II, Cahiers de Topologie et Géométrie Différentielle Catégoriques 26 2 (1985) 135-168 [numdam:CTGDC_1985__26_2_135_0]
  • Patrick Schultz. “Regular and exact (virtual) double categories.” arXiv:1505.00712 (2015).

Last revised on January 9, 2025 at 17:36:11. See the history of this page for a list of all contributions to it.