nLab
promonad
Redirected from "promonads".
Contents
Context
Categorical algebra
2-Category theory
2-category theory
Definitions
Transfors between 2-categories
Morphisms in 2-categories
Structures in 2-categories
Limits in 2-categories
Structures on 2-categories
Contents
Idea
A promonad or profunctor monad is a monad in the bicategory Prof of small categories, profunctors, and natural transformations.
The data of a promonad on a category is equivalently the data of an identity-on-objects functor from (known as the collapse of the promonad).
Examples
- Every monad on a category induces a representable promonad on .
- Every comonad on a category induces a corepresentable promonad on .
Related pages
References
- Maren Justesen, Bikategorien af Profunktorer, Aarhus 1968 (pdf)
- Michel Thiébaud, Self-dual structure-semantics and algebraic categories, PhD thesis (1971)
- Richard J. Wood, Proarrows II, Cahiers de Topologie et Géométrie Différentielle Catégoriques 26 2 (1985) 135-168 [numdam:CTGDC_1985__26_2_135_0]
- Patrick Schultz. “Regular and exact (virtual) double categories.” arXiv:1505.00712 (2015).
Last revised on January 9, 2025 at 17:36:11.
See the history of this page for a list of all contributions to it.