# nLab pseudonatural transformation

Contents

### Context

#### 2-Category theory

2-category theory

Definitions

Transfors between 2-categories

Morphisms in 2-categories

Structures in 2-categories

Limits in 2-categories

Structures on 2-categories

# Contents

## Idea

A pseudonatural transformation is a lax natural transformation whose $2$-cell components are all invertible.

## Definition

###### Definition

Given two 2-functors $U, V: S \stackrel{\to}{\to} C$ between 2-categories, a pseudonatural transformation $\phi: U \to V$ is a rule that assigns to each object $s$ of $S$ a morphism $\phi(s): U(s) \to V(s)$ of $C$, and to each morphism $f: r \to s$ of $S$ an invertible 2-morphism $\phi(f)$ of $C$:

$\array{ U(r) & \stackrel{U(f)}{\to} & U(s) \\ \phi(r) \downarrow & \phi(f) \swArrow & \downarrow \phi(s) \\ V(r) & \underset{V(f)}{\to} & V(s) }$

such that the following coherence laws are satisfied in $C$ (throughout we leave the associators and unitors in $C$ implicit):

1. respect for composition: for all composable morphisms $r \stackrel{f}{\to} s \stackrel{g}{\to} t$ in $S$ we have an equality

$\array{ && U(s) \\ & {}^{\mathllap{U(f)}}\nearrow &\downarrow^{\phi(s)}& \searrow^{\mathrlap{U(g)}} \\ U(r) &\swArrow_{\phi(f)}&V(s) &\swArrow_{\phi(g)}& U(t) \\ {}^{\mathllap{\phi(r)}}\downarrow &{}^{V(f)}\nearrow& \Downarrow^{V(f,g)} &\searrow^{V(g)}& \downarrow^{\mathrlap{\phi(t)}} \\ V(r) &&\underset{V( g\circ f)}{\to}&& V(t) } \;\;\; = \;\;\; \array{ && U(s) \\ & {}^{\mathllap{U(f)}}\nearrow &\Downarrow^{U(f,g)}& \searrow^{\mathrlap{U(g)}} \\ U(r) &&\stackrel{U(g \circ f)}{\to}&& U(t) \\ {}^{\mathllap{\phi(r)}}\downarrow && \swArrow_{\phi(g \circ f )} && \downarrow^{\mathrlap{\phi(t)}} \\ V(r) &&\underset{V(g \circ f)}{\to}&& V(t) } \,,$

of pasting 2-morphisms as indicated, where $U(f,g)$ and $V(f,g)$ denote the compositors of the 2-functors $U$ and $V$,

2. respect for units, (…)

3. naturality

for every 2-morphism

$\array{ && \stackrel{f}{\to} \\ & \nearrow && \searrow \\ r &&\Downarrow^{F}&& s \\ & \searrow && \nearrow \\ && \underset{g}{\to} }$

in $S$ an equality

$\array{ && \stackrel{U(f)}{\to} \\ & \nearrow &\Downarrow^{U(F)}& \searrow \\ U(r) &&\stackrel{U(g)}{\to}&& U(s) \\ {}^{\mathllap{\phi(r)}}\downarrow &&\swArrow_{\phi(g)}&& \downarrow^{\mathrlap{\phi(s)}} \\ V(r) &&\underset{V(g)}{\to}&& V(s) } \;\;\; = \;\;\; \array{ U(r) &&\stackrel{U(f)}{\to}&& U(s) \\ {}^{\mathllap{\phi(r)}}\downarrow &&\swArrow_{\phi(f)}&& \downarrow^{\mathrlap{\phi(s)}} \\ V(r) &&\stackrel{V(f)}{\to}&& V(s) \\ & \searrow &\Downarrow^{V(F)}& \nearrow \\ && \underset{V(g)}{\to} }$

in $C$.

A pseudonatural transformation is called a pseudonatural equivalence if each component $\phi(s)$ is an equivalence in the 2-category $C$. This is equivalent to $\phi$ itself being an equivalence in the 2-category $[S,C]$ of 2-functors, pseudonatural transformations, and modifications.

A generalization to extranatural transformations can be found in

• Alexander S. Corner, A universal characterisation of codescent objects, TAC 2019.

Discussion of the globular approach can be found in

• Camell Kachour: Kamel Kachour, Définition algébrique des cellules non-strictes, Cahiers de Topologie et de Géométrie Différentielle Catégorique (2008), volume 1, pages 1–68.

• Camell Kachour: Steps toward the Weak ω-category of the Weak ω-categories in the globular setting, Published in : Categories and General Algebraic Structures with Applications (2015).