nLab type of mutually exclusive propositions

Contents

Definition

Recall that propositions PP and QQ are mutually exclusive if and only if ¬(PQ)\neg (P \wedge Q) holds. Given a type of propositions (Prop,El)(\mathrm{Prop}, \mathrm{El}), the type of mutually exclusive propositions is given by the type

Prop ± P +:Prop P :PropEl(¬(P +P ))\mathrm{Prop}_\pm \coloneqq \sum_{P^+:\mathrm{Prop}} \sum_{P^-:\mathrm{Prop}} \mathrm{El}(\neg (P^+ \wedge P^-))

We denote the two projection functions as () +:Prop ±Prop(-)^+:\mathrm{Prop}_\pm \to \mathrm{Prop} and () :Prop ±Prop(-)^-:\mathrm{Prop}_\pm \to \mathrm{Prop}.

In the antithesis interpretation of affine logic into constructive mathematics, an affine proposition PP is interpreted as a pair (P +,P )(P^+, P^-) of mutually exclusive propositions. Similarly, an affine predicate PP on a type AA is interpreted as a pair (P +,P )(P^+, P^-) of predicates on AA in intuitionistic logic which are pointwise mutually exclusive in that ¬(P +(x)P (x))\neg (P^+(x) \wedge P^-(x)) holds for all x:Ax:A. This is equivalently a function P:AProp ±P:A \to \mathrm{Prop}_\pm.

Affine logic of mutually exclusive propositions

We have the following propositional and predicate affine logical operations on mutually exclusive propositions:

  • truth is an element of Prop ±\mathrm{Prop}_\pm defined as
1(,)1 \coloneqq (\top, \bot)

We say that a pair of mutually exclusive propositions (P +,P )(P^+, P^-) holds if there is an element p:(P +,P )= Prop ±1p:(P^+, P^-) =_{\mathrm{Prop}_\pm} 1

  • falsehood is an element of Prop ±\mathrm{Prop}_\pm defined a
0(,)0 \coloneqq (\bot, \top)
  • additive conjunction is a function from Prop ±×Prop ±\mathrm{Prop}_\pm \times \mathrm{Prop}_\pm to Prop ±\mathrm{Prop}_\pm defined as
(P +,P )(Q +,Q )(P +Q +,P Q )(P^+, P^-) \sqcap (Q^+, Q^-) \coloneqq (P^+ \wedge Q^+, P^- \vee Q^-)
  • additive disjunction is a function from Prop ±×Prop ±\mathrm{Prop}_\pm \times \mathrm{Prop}_\pm to Prop ±\mathrm{Prop}_\pm defined as
(P +,P )(Q +,Q )(P +Q +,P Q )(P^+, P^-) \sqcup (Q^+, Q^-) \coloneqq (P^+ \vee Q^+, P^- \wedge Q^-)
  • multiplicative conjunction is a function from Prop ±×Prop ±\mathrm{Prop}_\pm \times \mathrm{Prop}_\pm to Prop ±\mathrm{Prop}_\pm defined as
(P +,P )(Q +,Q )(P +Q +,(P +Q )(Q +P ))(P^+, P^-) \boxtimes (Q^+, Q^-) \coloneqq (P^+ \wedge Q^+, (P^+ \Rightarrow Q^-) \wedge (Q^+ \Rightarrow P^-))
  • multiplicative disjunction is a function from Prop ±×Prop ±\mathrm{Prop}_\pm \times \mathrm{Prop}_\pm to Prop ±\mathrm{Prop}_\pm defined as
(P +,P )(Q +,Q )((P Q +)(Q P +),P Q )(P^+, P^-) \boxplus (Q^+, Q^-) \coloneqq ((P^- \Rightarrow Q^+) \wedge (Q^- \Rightarrow P^+), P^- \wedge Q^-)
  • linear implication is a function from Prop ±×Prop ±\mathrm{Prop}_\pm \times \mathrm{Prop}_\pm to Prop ±\mathrm{Prop}_\pm defined as
(P +,P )(Q +,Q )((P +Q +)(Q P ),P +Q )(P^+, P^-) \multimap (Q^+, Q^-) \coloneqq ((P^+ \Rightarrow Q^+) \wedge (Q^- \Rightarrow P^-), P^+ \wedge Q^-)
  • linear negation is a function from Prop ±\mathrm{Prop}_\pm to Prop ±\mathrm{Prop}_\pm defined as
(P +,P ) (P ,P +)(P^+, P^-)^\bot \coloneqq (P^-, P^+)
  • the linear existential quantifier for a type AA is a function from AProp ±A \to \mathrm{Prop}_\pm to Prop ±\mathrm{Prop}_\pm defined as
x:A(P +(x),P (x))(x:A.P +(x),x:A.P (x))\bigsqcup_{x:A} (P^+(x), P^-(x)) \coloneqq (\exists x:A.P^+(x), \forall x:A.P^-(x))
  • the linear universal quantifier for a type AA is a function from AProp ±A \to \mathrm{Prop}_\pm to Prop ±\mathrm{Prop}_\pm defined as
x:A(P +(x),P (x))(x:A.P +(x),x:A.P (x))\bigsqcap_{x:A} (P^+(x), P^-(x)) \coloneqq (\forall x:A.P^+(x), \exists x:A.P^-(x))
!(P +,P )(P +,¬P +)!(P^+, P^-) \coloneqq (P^+, \neg P^+)
?(P +,P )(¬P ,P )?(P^+, P^-) \coloneqq (\neg P^-, P^-)

Affirmation, refutation, and stability

A pair of mutually exclusive propositions is affirmative if we have !(P +,P )=(P +,P )!(P^+, P^-) = (P^+, P^-) and a pair of mutually exclusive propositions is refutative if we have ?(P +,P )=(P +,P )?(P^+, P^-) = (P^+, P^-). By definition, affirmative pairs consist of an intuitionistic proposition and its negation, and refutative pairs are the affine negation of an affirmative pair. As a result, we have equivalences of types

Prop P:Ω ±!(P)= Ω ±PProp P:Ω ±?(P)= Ω ±P\mathrm{Prop} \simeq \sum_{P:\Omega_\pm} !(P) =_{\Omega_\pm} P \qquad \mathrm{Prop} \simeq \sum_{P:\Omega_\pm} ?(P) =_{\Omega_\pm} P

Given an affirmative pair PP, the intuitionistic negation of PP is given by ¬P!(P )\neg P \coloneqq !(P^\bot), and given a refutative pair PP, the intuitionistic negation of PP is given by ¬P?(P )\neg P \coloneqq ?(P^\bot).

A pair of mutually exclusive propositions is stable if !(P +,P )= Ω ±?(P +,P )!(P^+, P^-) =_{\Omega_\pm} ?(P^+, P^-). This automatically implies that P += Ω¬P P^+ =_\Omega \neg P^- and ¬P += ΩP \neg P^+ =_\Omega P^- by definition of exponential conjunction and exponential disjunction, which in turn implies that P += Ω¬¬P +P^+ =_\Omega \neg \neg P^+ and P = Ω¬¬P P^- =_\Omega \neg \neg P^-, hence the term stable.

Decidable propositions

A pair of mutually exclusive propositions PP is decidable if PP =1P \sqcup P^\bot = 1. The type of all decidable pairs of mutually exclusive propositions is equivalent to the boolean domain

bool P:Ω ±PP = Ω ±1\mathrm{bool} \simeq \sum_{P:\Omega_\pm} P \sqcup P^\bot =_{\Omega_\pm} 1

 Properties

The exponential conjunction and exponential disjunction can be defined entirely in terms of the multiplicative disjunction and multiplicative conjunction respectively:

!PPP?PPP!P \coloneqq P \boxtimes P \quad ?P \coloneqq P \boxplus P

Excluded middle

Suppose that the law of excluded middle holds in the intuitionistic logic, so that the logic becomes classical logic. Then Prop\mathrm{Prop} is equivalent to the boolean domain 𝟚\mathbb{2}, and Prop ±\mathrm{Prop}_\pm is equivalent to the three-element set {(,),(,),(,)}\{(\top, \bot), (\bot, \bot), (\bot, \top)\} representing the propositions in Łukasiewicz logic. As a result, the affine predicate logic in the antithesis interpretation becomes predicate Łukasiewicz logic. The affirmative and refutative pairs of mutually exclusive propositions are all decidable.

The law of excluded middle can be expressed in the affine logic as

!P= Ω ±PPor?P= Ω ±PP!P =_{\Omega_\pm} P \sqcup P \; \mathrm{or} \; ?P =_{\Omega_\pm} P \sqcap P

References

Last revised on January 17, 2025 at 17:48:45. See the history of this page for a list of all contributions to it.