Borel’s theorem says that every power series is the Taylor series of some smooth function. In other words: for every collection of prescribed partial derivatives at some point, there is a smooth function having these as actual partial derivatives.

Statement

For $\mathbb{R}^{n+m}$ a Cartesian space of dimension$n+m \in \mathbb{N}$, write $C^\infty(\mathbb{R}^{n+m})$ for the $\mathbb{R}$-algebra of smooth functions with values in $\mathbb{R}$.

Write $m^\infty_{\mathbb{R}^n \times \{0\}} \subset C^\infty(\mathbb{R}^{n+m})$ for the ideal of functions all whose partial derivatives along $\mathbb{R}^m$ vanish.

between smooth functions modulo those whose derivatives along $\mathbb{R}^m$ vanish and the ring of power series in $m$-variables over $C^\infty(\mathbb{R}^n)$.