concrete object



For Γ:\Gamma : \mathcal{E} \to \mathcal{B} a functor we say that it has codiscrete objects if it has a full and faithful right adjoint coDisc:coDisc : \mathcal{B} \hookrightarrow \mathcal{E}.

This is for instance the case for the global section geometric morphism of a local topos (DiscΓcoDisc) (Disc \dashv \Gamma \dashv coDisc) \mathcal{E} \to \mathcal{B}.

In this situation, we say that a concrete object XX \in \mathcal{E} is one for which the (ΓcoDisc)(\Gamma \dashv coDisc)-unit of an adjunction is a monomorphism.

If \mathcal{E} is a sheaf topos, this is called a concrete sheaf.

If \mathcal{E} is a cohesive (∞,1)-topos then this is called a concrete (∞,1)-sheaf or the like.

The dual notion is that of a co-concrete object.


Γ\Gamma is a faithful functor on morphisms whose codomain is concrete.


tangent cohesion

differential cohesion

graded differential cohesion

id id fermionic bosonic bosonic R rheonomic reduced infinitesimal infinitesimal & étale contractible ʃ discrete discrete differential * \array{ && id &\dashv& id \\ && \vee && \vee \\ &\stackrel{fermionic}{}& \rightrightarrows &\dashv& \rightsquigarrow & \stackrel{bosonic}{} \\ && \bot && \bot \\ &\stackrel{bosonic}{} & \rightsquigarrow &\dashv& \R & \stackrel{rheonomic}{} \\ && \vee && \vee \\ &\stackrel{reduced}{} & \Re &\dashv& \Im & \stackrel{infinitesimal}{} \\ && \bot && \bot \\ &\stackrel{infinitesimal}{}& \Im &\dashv& \& & \stackrel{\text{étale}}{} \\ && \vee && \vee \\ &\stackrel{contractible}{}& ʃ &\dashv& \flat & \stackrel{discrete}{} \\ && \bot && \bot \\ &\stackrel{discrete}{}& \flat &\dashv& \sharp & \stackrel{differential}{} \\ && \vee && \vee \\ && \emptyset &\dashv& \ast }


Revised on February 20, 2013 10:37:24 by Urs Schreiber (