nLab
adjoint monad

Contents

Definition

A monad (T,μ,η)(T,\mu,\eta) is adjoint to a comonad (G,δ,ϵ)(G,\delta,\epsilon), if its underlying endofunctor TT is left adjoint to the underlying 1-cell GG of the comonad, and δ\delta and ϵ\epsilon are conjugate/adjoint/mate 2-cells to μ\mu and η\eta in the sense explained below.

Construction

In fact given a monad T=(T,μ T,η T)\mathbf{T} = (T,\mu^T,\eta^T) which has a right adjoint GG, automatically GG is a part of a comonad G=(G,δ G,ϵ G)\mathbf{G} = (G,\delta^G,\epsilon^G) where δ G\delta^G and ϵ G\epsilon^G are in some sense dual to μ T\mu^T and η T\eta^T.

Thus there is a bijective correspondence between monads having a right adjoint and comonads having a left adjoint (what Alexander Rosenberg calls duality). I am not sure that the terminology is optimal. In any case, it is a little more than a consequence of two general facts.

  1. If TGT\dashv G then T kG kT^k \dashv G^k for every natural number kk.

  2. Given two adjunctions STS\dashv T and STS'\dashv T' where S,S:BAS,S': B\to A, then there is a bijection between the natural transformations ϕ:SS\phi:S'\Rightarrow S and natural transformations ψ:TT\psi:T\Rightarrow T' such that

A(S,) B(,T) A(ϕ,) B(,ψ) A(S,) B(,T) \array{ A (S,-) &\to& B(-,T) \\ {}^{\mathllap{A(\phi,-)}}\downarrow &&\downarrow {}^{\mathrlap{B(-,\psi)}} \\ A(S',-)&\to & B(-,T') }

where the horizontal arrows are the natural bijections given by the adjunctions. Eilenberg and Moore would write ϕψ\phi\dashv\psi and talk about “adjointness for morphisms” (of functors), which is of course relative to the given adjunctions among functors. MacLane calls the correspondence conjugation (Categories for Working Mathematician, 99-102). It is a special case, of a general construction of mates, in terminology of Australian category school.

If η,η\eta,\eta' and ϵ,ϵ\epsilon,\epsilon' are their unit and counit of course the upper arrow is (SMfN)Tfη M(S M\stackrel{f}\to N)\mapsto Tf\circ \eta_M and the lower arrow (SMgN)Tgη M(S'M\stackrel{g}\to N)\mapsto T'g\circ\eta'_M. Thus the condition renders as

T(fϕ M)η M=ψ NTfη MT'(f\circ\phi_M)\circ\eta'_M = \psi_N\circ Tf\circ\eta_M

or TfTϕ Mη M=Tfψ SMη MT'f\circ T'\phi_M\circ\eta'_M = T'f\circ \psi_{SM}\circ\eta_M. Given ϕ\phi, the uniqueness of B(,ψ)B(-,\psi) is clear from the above diagram, as the horizontal arrows are invertible. B(,ψ)B(-,\psi) determines ψ\psi, namely ψ N=B(,ψ)(id N)\psi_N = B(-,\psi)(id_N). For the existence of ψ\psi (given ϕ\phi) satisfying the above equation, one proposes that ψ\psi is the composition ψ=TϵTϕTηT\psi = T'\epsilon \circ T'\phi T \circ \eta'T, i.e.

TηTTSTTψTTSTTϵT T\stackrel{\eta' T}\longrightarrow T'S' T\stackrel{T'\psi T}\longrightarrow T'ST \stackrel{T'\epsilon}\longrightarrow T'

and checks that it works. The inverse is similarly given by the composition

SSηSTSSψSSTSϵSS S'\stackrel{S'\eta}\longrightarrow S' TS\stackrel{S'\psi S}\longrightarrow S'T'S\stackrel{\epsilon' S}\longrightarrow S

This correspondence now enables in our special case to dualize μ T\mu^T to δ G\delta^G, and similarly unit to the counit.

Adjoint monad and comonad from an adjoint triple of functors

Every adjoint triple F *F *F !F^*\dashv F_* \dashv F^! induces an adjoint pair F *F *F *F !F_* F^*\dashv F_* F^!. The endofunctor F *F *F_* F^* is underlying a monad induced by the adjunction F *F *F^*\dashv F_* and F *F !F_* F^! is underlying a comonad induced by the adjuntion F *F !F_*\dashv F^!. This pair of a monad and a comonad are adjoint.

General adjoint algebras and coalgebras in End(A)End(A)

Given a small category AA, the category End(A)End(A) of endofunctors and natural transformations of endofunctors (with vertical composition as composition) is monoidal with respect to the composition as the tensor product of objects (endofunctor) and Godement product (horizontal composition) as the tensor product of morphisms (natural transformations). Hence we can consider operads and algebras over operads, as well as, dually, coalgebras over cooperads; or some other framework for general algebras and coalgebras (or even props).

In any case, given an adjunction TGT\dashv G, operations T nTT^n\to T dualize to cooperations GG nG\to G^n, and more generally multioperations T kT lT^k\to T^l dualize to the multioperations T lT kT^l\to T^k. We would like to sketch the proof that the identities for operations on TT, correspond to the identities on cooperations on GG (and more generally there is a duality among the identities for multioperations). This is essentially the consequence of

Lemma. (Zoran) Given the adjunction TGT\dashv G with unit η\eta and counit ϵ\epsilon, and the sequence

T kαT lβT s T^k \stackrel{\alpha}\longrightarrow T^l\stackrel\beta\longrightarrow T^s

the composition α *β *\alpha^*\circ\beta^* of the dual (in the above sense) sequence

G kα *G lβ *G s G^k \stackrel{\alpha^*}\longleftarrow G^l\stackrel{\beta^*}\longleftarrow G^s

equal to the dual (βα) *(\beta\circ\alpha)^* of βα\beta\circ\alpha,

Proof. Mike Shulman notices that this is a special case of known contravariant functoriality of mates, but here is a direct proof.

We need to prove that the composition

G sη lG sG lT lG sG lβG sG lT sG sG lϵ sG lη kG lG kT kG lG kαG lG kT lG lG kϵ lG k G^s\stackrel{\eta_l G^s}\to G^l T^l G^s\stackrel{G^l\beta G^s}\to G^l T^s G^s\stackrel{G^l \epsilon_s}\to G^l\stackrel{\eta_k G^l}\to G^k T^k G^l\stackrel{G^k\alpha G^l}\to G^k T^l G^l\stackrel{G^k\epsilon_l}\to G^k

equals the composition

G sη kG lG kT kG sG kαG lG kT lG sG kβG sG kT sG sG kϵ sG k. G^s\stackrel{\eta_k G^l}\to G^k T^k G^s\stackrel{G^k\alpha G^l}\to G^k T^l G^s\stackrel{G^k\beta G^s}\to G^k T^s G^s\stackrel{G^k\epsilon_s}\to G^k.

Note that in the two compositions there is an opposite order between the expressions involving α\alpha and those involving β\beta. But anyway, their equality reduces to a naturality calculation (which in particular exchanges the order of α\alpha and β\beta in effect):

G s η lG s G lT lG s G lβG s G lT sG s G lϵ s G l η kG s η kG lT lG s η kG lT sG s η kG l G kT kG s G kT kη lG s G kT kG lT lG s G kT kG lβG s G kT kG lT sG s G kT kG lϵ s G kT kG l G kαG s G kαG lT lG s G kαG kT sG s G kαG l G kT lG s G kT lη lG s G kT lG lT lG s G kT lG lβG s G kT lG lT sG s G kT lG lϵ s G kT lG l G kβG s ρ G kϵ lT sG s G kϵ l G kT sG s = G kT sG l = G kT sG s G kϵ s G k\array{ G^s &\stackrel{\eta_l G^s}\to & G^l T^l G^s &\stackrel{G^l\beta G^s}\to & G^l T^s G^s&\stackrel{G^l \epsilon_s}\longrightarrow& G^l\\ \eta^k G^s\downarrow &&\downarrow \eta_k G^l T^l G^s&&\downarrow \eta_k G^l T^s G^s&& \downarrow \eta_k G^l \\ G^k T^k G^s &\stackrel{G^k T^k\eta_l G^s}\longrightarrow &G^k T^k G^l T^l G^s &\stackrel{G^k T^k G^l \beta G^s}\longrightarrow & G^k T^k G^l T^s G^s &\stackrel{G^k T^k G^l \epsilon_s}\longrightarrow & G^k T^k G^l\\ G^k \alpha G^s \downarrow && \downarrow G^k \alpha G^l T^l G^s&&\downarrow G^k \alpha G^k T^s G^s&&\downarrow G^k \alpha G^l\\ G^k T^l G^s &\stackrel{G^k T^l\eta_l G^s}\longrightarrow & G^k T^l G^l T^l G^s &\stackrel{G^k T^l G^l \beta G^s}\longrightarrow & G^k T^l G^l T^s G^s &\stackrel{G^k T^l G^l\epsilon_s}\longrightarrow & G^k T^l G^l\\ G^k\beta G^s \downarrow &&\downarrow{\rho} &&\downarrow G^k \epsilon_l T^s G^s &&\downarrow G^k\epsilon_l \\ G^k T^s G^s &=&G^k T^s G^l &=&G^k T^s G^s&\stackrel{G^k \epsilon_s}\longrightarrow& G^k }

where ρ:=G kβG sG kϵ lG s=G kϵ lT sG sG kT lG lβG s\rho := G^k \beta G^s \circ G^k \epsilon_l G^s = G^k\epsilon_l T^s G^s\circ G^k T^l G^l \beta G^s. The commutativity of all small squares in the diagram is evident, except the lower left corner. This one follows by one of the triangle identities for the adjunction T lG lT^l\dashv G^l. Namely,

G kβG s=G kβG s(G kϵ lT lG sG kT lη lG s)=ρG kT lη lG s G^k \beta G^s = G^k \beta G^s \circ (G^k \epsilon_l T^l G^s\circ G^k T^l \eta_l G^s) = \rho \circ G^k T^l \eta_l G^s

Examples

Adjoint modalities

An adjoint modality is an example of a pair of adjoint monads.

References

There is a section 3, “adjoint triples” in

where triple is in the sense of monad. So we say instead a monad adjoint to a comonad. Distinguish from the adjoint triple of functors.

Discussion in the context of ambidextrous adjunctions is in

Revised on January 9, 2014 21:00:47 by Urs Schreiber (89.204.130.45)