The differential-geometric Chern-Weil homomorphism (evaluating curvature 2-forms of connections in invariant polynomials) first appears in print (Cartan's map) in:
Henri Cartan, Section 7 of: Cohomologie réelle d’un espace fibré principal différentiable. I : notions d’algèbre différentielle, algèbre de Weil d’un groupe de Lie, Séminaire Henri Cartan, Volume 2 (1949-1950), Talk no. 19, May 1950 (numdam:SHC_1949-1950__2__A18_0)
Henri Cartan, Section 7 of: Notions d’algèbre différentielle; applications aux groupes de Lie et aux variétés où opère un groupe de Lie, in: Centre Belge de Recherches Mathématiques, Colloque de Topologie (Espaces Fibrés) Tenu à Bruxelles du 5 au 8 juin 1950, Georges Thon 1951 (GoogleBooks, pdf)
reprinted in the appendix of:
(These two articles have the same content, with the same section outline, but not the same wording. The first one is a tad more detailed. The second one briefly attributes the construction to Weil, but without reference.)
and around equation (10) of:
It is the independence of this construction under the choice of connection which Chern 50 attributes (below equation 10) to the unpublished
The proof is later recorded, in print, in: Chern 51, III.4, Kobayashi-Nomizu 63, XII, Thm 1.1.
But the main result of Chern 50 (later called the fundamental theorem in Chern 51, XII.6) is that this differential-geometric “Chern-Weil” construction is equivalent to the topological (homotopy theoretic) construction of pulling back the universal characteristic classes from the classifying space along the classifying map of the given principal bundle.
This fundamental theorem is equation (15) in Chern 50 (equation 31 in Chern 51), using (quoting from the same page):
methods initiated by E. Cartan and recently developed with success by H. Cartan, Chevalley, Koszul, Leray, and Weil [13]
Here reference 13 is:
More in detail, Chern’s proof of the fundamental theorem (Chern 50, (15), Chern 51, III (31)) uses:
the fact that invariant polynomials constitute the real cohomology of the classifying space, , which is later expanded on in:
Raoul Bott, On the Chern-Weil homomorphism and the continuous cohomology of Lie-groups, Advances in Mathematics Volume 11, Issue 3, December 1973, Pages 289-303 (doi:10.1016/0001-8708(73)90012-1)
Some authors later call this the “abstract Chern-Weil isomorphism”.
existence of universal connections for manifolds in bounded dimension (see here), which is later developed in:
Mudumbai Narasimhan, Sundararaman Ramanan, Existence of Universal Connections, American Journal of Mathematics Vol. 83, No. 3 (Jul., 1961), pp. 563-572 (jstor:2372896)
Mudumbai Narasimhan, Sundararaman Ramanan, Existence of Universal Connections II, American Journal of Mathematics Vol. 85, No. 2 (Apr., 1963), pp. 223-231 (jstor:2373211)
Roger Schlafly, Universal connections, Invent Math 59, 59–65 (1980) (doi:10.1007/BF01390314)
Roger Schlafly, Universal connections: the local problem, Pacific J. Math. Volume 98, Number 1 (1982), 157-171 (euclid:pjm/1102734394)
Review of the Chern-Weil homomorphism:
Shiing-Shen Chern, Chapter III of: Topics in Differential Geometry, Institute for Advanced Study (1951) (pdf)
Shoshichi Kobayashi, Katsumi Nomizu, Chapter XII in: Foundations of Differential Geometry, Volume 1, Wiley 1963 (web, ISBN:9780471157335, Wikipedia)
Shiing-Shen Chern, James Simons, Section 2 of: Characteristic Forms and Geometric Invariants, Annals of Mathematics Second Series, Vol. 99, No. 1 (Jan., 1974), pp. 48-69 (jstor:1971013)
(in the context of Chern-Simons forms)
John Milnor, Jim Stasheff, Appendix C of: Characteristic classes, Princeton Univ. Press (1974) (ISBN:9780691081229)
Eckhard Meinrenken, Section 5 of: Group actions on manifolds, Lecture Notes 2003 (pdf, pdf)
Mike Hopkins, Isadore Singer, Section 3.3 of: Quadratic Functions in Geometry, Topology,and M-Theory, J. Differential Geom. 70 Number 3 (2005), 329-452 (arXiv:math.AT/0211216, euclid:1143642908)
Domenico Fiorenza, Urs Schreiber, Jim Stasheff, Section 2.1 in: Cech Cocycles for Differential characteristic Classes, Advances in Theoretical and Mathematical Physics 16 1 (2012) 149-250 [doi:10.1007/BF02104916, arXiv:1011.4735, euclid:1358950853]
(in generalization to principal ∞-bundles)
Daniel Freed, Michael Hopkins: Chern-Weil forms and abstract homotopy theory, Bull. Amer. Math. Soc. 50 (2013) 431-468 [doi:10.1090/S0273-0979-2013-01415-0, arXiv:1301.5959]
(using the stacky language of FSS 10)
Adel Rahman: Chern-Weil theory (2017 pdf]
Domenico Fiorenza, Hisham Sati, Urs Schreiber: Section 8 of: The Character Map in Non-Abelian Cohomology, World Scientific (2023) [doi:10.1142/13422]
(as a special case of the character map on generalized nonabelian cohomology)
With an eye towards applications in mathematical physics:
Mikio Nakahara, Chapter 11.1 of: Geometry, Topology and Physics, IOP 2003 (doi:10.1201/9781315275826, pdf)
Gerd Rudolph, Matthias Schmidt, Chapter 4 of: Differential Geometry and Mathematical Physics Part II. Fibre Bundles, Topology and Gauge Fields, Springer 2017 (doi:10.1007/978-94-024-0959-8)
See also:
Enhancement of the Chern-Weil homomorphism from ordinary cohomology-groups to dg-categories of -local systems:
Last revised on November 28, 2024 at 15:34:36. See the history of this page for a list of all contributions to it.