group cohomology, nonabelian group cohomology, Lie group cohomology
cohomology with constant coefficients / with a local system of coefficients
differential cohomology
symmetric monoidal (∞,1)-category of spectra
This page collects links related to the lecture notes
Chromatic Homotopy Theory
Lecture series 2010
on complex oriented cohomology, the Adams spectral sequence and chromatic homotopy theory from the modern point of view of E-infinity geometry.
Based on the program of
as nicely laid out in more detail in
First indications of the big picture developed here are due to
Via the chromatic stratification of the moduli stack of formal groups one recovers as, roughly, the second chromatic stage the moduli stack of elliptic curves. For the story in that case see
See also
Lectures
Lecture 1 Introduction (pdf)
Lecture 2 Lazard's theorem (pdf)
Lecture 3 Lazard’s theorem (continued) (pdf)
Lecture 4 Complex-oriented cohomology theories (pdf)
Lecture 5 Complex bordism (pdf)
Lecture 6 MU and complex orientations (pdf)
Lecture 7 The homology of MU (pdf)
Lecture 8 The Adams spectral sequence (pdf)
Lecture 9 The Adams spectral sequence for MU (pdf)
Lecture 10 The proof of Quillen's theorem (pdf)
Lecture 11 Formal groups (pdf)
Lecture 12 Heights and formal groups (pdf)
Lecture 13 The stratification of (pdf)
Lecture 14 Classification of formal groups (pdf)
Lecture 15 Flat modules over (pdf)
Lecture 16 The Landweber exact functor theorem (pdf)
Lecture 17 Phantom maps (pdf)
Lecture 18 Even periodic cohomology theories (pdf)
Lecture 19 Morava stabilizer groups (pdf)
Lecture 20 Bousfield localization (pdf)
Lecture 21 Lubin-Tate theory (pdf)
Lecture 22 Morava E-theory and Morava K-theory (pdf)
Lecture 23 The Bousfield Classes of and (pdf)
Lecture 24 Uniqueness of Morava K-theory (pdf)
Lecture 25 The Nilpotence lemma (pdf)
Lecture 26 Thick subcategories (pdf)
Lecture 27 The periodicity theorem (pdf)
Lecture 28 Telescopic localization (pdf)
Lecture 29 Telescopic vs -localization (pdf)
Lecture 30 Localizations and the Adams-Novikov spectral sequence (pdf)
Lecture 31 The smash product theorem (pdf)
Lecture 32 The chromatic convergence theorem (pdf)
Lecture 33 Complex bordism and -localization (pdf)
Lecture 34 Monochromatic layers (pdf)
Lecture 35 The image of (pdf)
Last revised on January 2, 2021 at 16:23:09. See the history of this page for a list of all contributions to it.