nLab Mackey functor


under construction


Homotopy theory

homotopy theory, (∞,1)-category theory, homotopy type theory

flavors: stable, equivariant, rational, p-adic, proper, geometric, cohesive, directed

models: topological, simplicial, localic, …

see also algebraic topology



Paths and cylinders

Homotopy groups

Basic facts


Stable Homotopy theory



Generally, the term Mackey functor refers to an additive functor from a (subcategory of) a category of correspondences (in a disjunctive category 𝒞\mathcal{C}) to possibly any other additive category which however usually is the “base” abelian category. More generally the term now refers to the fairly obvious homotopy theoretic or higher categorical refinements of this concept.

Therefore the concept of Mackey functors is similar to that of sheaves with transfer and as such appears (implicitly) in the discussion of motives (explicitly e.g. in Kahn-Yamazaki 11, section 2, where 𝒞\mathcal{C} is a category of suitable schemes).

Specifically, the concept was introduced and named as such in the context of representation theory (Dress 71) and equivariant homotopy theory/equivariant cohomology (May 96). Here the underlying category of correspondences is that in finite G-sets, called the Burnside category.

The equivariant homotopy groups π n(E)\pi_n(E) of a (genuine) G-spectrum EE organize into a Mackey functor on the Burnside category with values in abelian groups. This plays a key role in the equivariant Whitehead theorem. In fact, genunine G-spectra themselves are equivalent to Mackey (∞,1)-functors from the Burnside category to the (∞,1)-category of spectra (GuillouMay 11, Barwick 14).


We follow the modern account in (Barwick 14).

Let 𝒞\mathcal{C} be a disjunctive (∞,1)-category and write Corr 1(𝒞) Corr_1(\mathcal{C})^\otimes for the (∞,1)-category of correspondences in 𝒞\mathcal{C}, regarded as a symmetric monoidal (∞,1)-category with respect to its coproduct (which is a biproduct by disjunctiveness of 𝒞\mathcal{C}).

Write 𝒜=\mathcal{A} = Spectra {}^{\oplus} for the (∞,1)-category of spectra regarded as a symmetric monoidal (∞,1)-category with respect to direct sum. More generally 𝒜\mathcal{A} could be any symmetric monoidal stable (∞,1)-category

Then a (spectral) Mackey functor on 𝒞\mathcal{C} is a monoidal (∞,1)-functor of the form

S:Corr 1(𝒞) 𝒜 . S \;\colon\; Corr_1(\mathcal{C})^\otimes \longrightarrow \mathcal{A}^{\oplus} \,.

Notice that this means that SS is in particular

  1. a covariant (∞,1)-functor () *:𝒞𝒜(-)_\ast \colon\mathcal{C} \to \mathcal{A};

  2. a contravariant (∞,1)-functor, hence () *:𝒞 op𝒜(-)^\ast \colon\mathcal{C}^{op} \to \mathcal{A};

  3. satisfying the Beck-Chevalley condition.

(More generally one may specify suitably chosen sub-(,1)(\infty,1)-categories 𝒞 ,𝒞 𝒞\mathcal{C}^\dagger, \mathcal{C}_\dagger \subset \mathcal{C} and restrict Corr 1Corr_1 to correspondences whose left leg is in 𝒞 \mathcal{C}_\dagger and whose right leg is in 𝒞 \mathcal{C}^\dagger (Barwick 14, section 5).)


Dress’ Mackey functors

For 𝒜\mathcal{A} taken to be (the derived category) of an abelian category (or better: postcomposed with a homological functor ) this definition reduces (Barwick 14) to that of Mackey functors as originally defined in (Dress 71).

Equivariant spectra

Let GG be a finite group. Let 𝒞=GSet\mathcal{C}= G Set be its category of G-sets. Then Corr 1(𝒞)Corr_1(\mathcal{C}) is essentially what is called the Burnside category of GG (possibly after abelianizing/stabilizing the hom-spaces suitably, but as (Barwick 14) highlights, this is unnecessary when one is mapping out of this into something abelian/stable, as is the case here).

For GG finite, Mackey functors on 𝒞\mathcal{C} are equivalent to genuine G-spectra (Guillou-May 11, theorem 0.1, Barwick 14, below example B.6) (Notice that this equivalence does not in general hold if GG is not a finite group.)


For EE a genuine G-spectrum, the corresponding spectral Mackey functor is given by the fixed point spectra of EE

G/HE(G/H)=[Σ + G/H,E] GE H, G/H \mapsto E(G/H) = [\Sigma^\infty_+ G/H, E]^G \simeq E^H \,,

where on the right we have the GG-equivariant mapping spectrum from the equivariant suspension spectrum of the transitive G-set G/HG/H to EE.

(e.g. (Guillou-May 11, remark 2.5), see also (Schwede 15, p. 16) for restriction and section 4 culminating on p. 37 for transfer and compatibility).

Further, the corresponding abelian-group valued Mackey functor is

π n(E):G/H[G/H +S n,X] G, \pi_n(E) \colon G/H \mapsto [G/H_+\wedge S^n, X]_G \,,

where now on the right we have just the homotopy classes of maps, i.e. the morphisms in the equivariant stable homotopy category (e.g. Greenlees-May 95, p. 43)


Cohomology with coefficients in a Mackey functor

We discuss cohomology of topological G-spaces with coefficients in a Mackey functor, following notation and conventions as in (May 96, sections IX, X). See also (Greenlees-May 95, p. 9).


For XX a pointed G-CW complex, define the chain complex C (X)C_\bullet(X) of Mackey functors to be given by the stable equivariant homotopy groups of the quotient spaces X /X 1X^{\bullet}/X^{\bullet-1}:

C n(X)π n(X n/X n1), C_n(X) \coloneqq \pi_n(X^n/X^{n-1}) \,,

Then for AA any Mackey functor, the ordinary cohomology of XX with coefficients in AA is the cochain cohomology of the complex of homs of Mackey functors C n(X)AC_n(X) \to A:

H G n(X,A)H n(Hom(C (X),A)). H_G^n(X,A) \coloneqq H^n( Hom(C_\bullet(X), A) ) \,.

More generally, for VV a G-representation, the (nV)(n-V)-RO(G)-graded cohomology of XX with coefficients in AA is

H G nV(X,A)=H G n(S VX,A). H_G^{n-V}(X,A) = H_G^n(S^V \wedge X,A) \,.

(May 96, section X.4 def. 4.1, def. 4.2)


The corresponding reduced cohomology H˜ n(,A)\tilde H^n(-,A) is represented by maps into the Eilenberg-MacLane G-space:

H˜ n(X,A)[X,K(A,n)] G. \tilde H^n(X,A) \simeq [X,K(A,n)]_G \,.

(Greenlees-May 95)


For this kind of cohomology, there is equivariant Serre spectral sequence (Kronholm 10).


Plain Mackey functors

The original article is

  • A. W. M. Dress, Notes on the theory of representations of finite groups. Part I: The Burnside ring of a finite group and some AGN-applications, Bielefeld, 1971,

Reviews and surveys:

See also

  • Tammo tom Dieck, Transformation groups, Studies in Mathematics, vol. 8, Walter de Gruyter, Berlin, New York, 1987, x + 311 pp.,

  • Serge Bouc, chapter 1 of Green Functors and G-sets, LNM 1671 (1997; paperback 2008) doi:10.1007/BFb0095821

  • Tammo tom Dieck, Equivariant homology and Mackey functors, Mathematische Annalen 206, no.1, pp. 67–78, 1973 doi:10.1007/BF01431529

  • John Greenlees, Peter May, appendix A of Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995) no 543 (pdf)

  • D. Tambara, The Drinfeld center of the category of Mackey functors, J. Algebra 319, 10, pp. 4018-4101 (2008) doi:10.1016/j.jalgebra.2008.02.011

  • Elango Panchadcharam, Categories of Mackey Functors, PhD thesis, Macquarie Univ. 2006

  • William Kronholm, The RO(G)RO(G)-graded Serre spectral sequence, Homology Homotopy Appl. Volume 12, Number 1 (2010), 75-92. (pdf, Euclid)

For Mackey functors enriched over closed multicategories:

Relation of Mackey functors to sheaves with transfer in the theory of motives:

  • Bruno Kahn, Takao Yamazaki, Voevodsky’s motives and Weil reciprocity, Duke Mathematical Journal 162, 14 (2013) 2751-2796 (arXiv:1108.2764)

Categorification to Mackey 2-functors is discussed found in

Spectral Mackey functors

The general concept of spectral Mackey functors

In equivariant stable homotopy theory

The construction of equivariant stable homotopy theory in terms of spectral Mackey functors is originally due to

The generalization of K-theory of permutative categories to spectral Mackey functors is discussed in

In Goodwillie calculus

Discussion of Goodwillie calculus via spectral Mackey functors

Last revised on December 16, 2022 at 09:18:30. See the history of this page for a list of all contributions to it.