Contents

cohomology

# Contents

## Idea

The Pontryagin classes are characteristic classes on the classifying space $B O(n)$ of the orthogonal group and, by pullback, on the base of any bundle with structural group the orthogonal group. The latter is where they were originally defined.

The analogs for the unitary group are the Chern classes.

## Definition

The universal Pontryagin characteristic classes $P_k$ on the classifying space $B O(n)$ are, up to a sign, the pullbacks of the Chern classes $c_{2k}$ along the complexification inclusion

$B O(n) \to B U(n) \,.$

## Properties

### As generating universal characteristic classes

The torsion-free quotient of the cohomology ring $H^\bullet(B SO(2n+1), \mathbb{Z})$ is the polynomial ring on all Pontryagin classes $\{P_i\}_{i = 1}^n$. The torsion is generated by Bockstein images of $H^\bullet(BSO(2n+1);\mathbb{F}_2)$, which is generated by the Stiefel-Whitney classes.

The torsion-free quotient of the cohomology ring $H^\bullet(B SO(2n), \mathbb{Z})$ is the quotient of the polynomial ring on Pontryagin classes $P_i$ and the Euler class $\chi$ by the relation $\chi^2 = P_n$; again the torsion is generated by Bocksteins of monomials in the Stiefel–Whitney classes.

### Further relation to Chern classes

Under the other canonical map

$j \;\colon\; B U(n) \to BO(2n)$

one has

$j^\ast(P_k) = \sum_{a + b = 2 k} (-1)^{a+k} c_a c_b$

and

$j^\ast(\chi) = c_n \,.$

### Splitting principle and Chern roots

Under the inclusion

$i \;\colon\; U(1)^n \hookrightarrow U(n) \to O(2n)$

of the maximal torus one has that

$(B i)^\ast(P_k) = \sigma_k(x_1, \cdots, x_n)^2$

and

$(B i)^\ast(\chi) = \sigma_n(x_1, \cdots, x_n)$

where the $x_i \in H^\bullet(B U(1)^n, \mathbb{Z})$ are the “Chern roots”.

### Chern-, Pontrjagin-, and Euler- characteristic forms

We spell out the formulas for the images under the Chern-Weil homomorphism of the Chern classes, Pontrjagin classes and Euler classes as characteristic forms over smooth manifolds.

#### Preliminaries

Let $X$ be a smooth manifold.

Write

(1)$\Omega^{2\bullet}(X) \;\; \in \; CAlg_{\mathbb{R}}$

for the commutative algebra over the real numbers of even-degree differential forms on $X$, under the wedge product of differential forms. This is naturally a graded commutative algebra, graded by form degree, but since we consider only forms in even degree it is actually a plain commutative algebra, too, after forgetting the grading.

Let $\mathfrak{g}$ be a semisimple Lie algebra (such as $\mathfrak{su}(d)$ or $\mathfrak{so}(d)$) with Lie algebra representation $V \,\in\, Rep_{\mathbb{C}}(\mathfrak{g})$ over the complex numbers of finite dimension $dim_{\mathbb{C}}(V) \,=\, n \,\in\, \mathbb{N}$ (for instance the adjoint representation or the fundamental representation), hence a homomorphism of Lie algebras

$\mathfrak{g} \xrightarrow{\;\;\rho\;\;} End_{\mathbb{C}}(V)$

to the linear endomorphism ring $End_{\mathbb{C}}(V)$, regarded here through its commutator as the endomorphism Lie algebra of $V$.

When regarded as an associative ring this is isomorphic to the matrix algebra of $n \times n$ square matrices

(2)$End_{\mathbb{C}}(V) \;\; \simeq \;\; Mat_{n \times n}(\mathbb{C}) \,.$

The tensor product of the $\mathbb{C}$-algebras (1) and (2)

is equivalently the $n \times n$ matrix algebra with coefficients in the complexification of even-degree differential forms:

$\Omega^{2\bullet} \big(X\big) \otimes_{\mathbb{R}} End_{\mathbb{C}}(V) \;\simeq\; \Omega^{2\bullet}(X) \otimes_{\mathbb{R}} \big( Mat_{n \times n}( \mathbb{R} ) \big) \;\; \simeq \;\; Mat_{n \times n} \big( \Omega^{2\bullet}(X) \otimes_{\mathbb{R}} \mathbb{C} \big) \,.$

The multiplicative unit

(3)$I \;\in\; Mat_{n \times n} \big( \Omega^{2\bullet}(X) \otimes_{\mathbb{R}} \mathbb{C} \big)$

in this algebra is the smooth function (differential 0-forms) which is constant on the $n \times n$ identity matrix and independent of $t$.

Given a connection on a $G$-principal bundle, we regard its $\mathfrak{g}$-valued curvature form as an element of this algebra

(4)$F_\nabla \,\in\, \Omega^2(X) \otimes_{\mathbb{R}} \mathfrak{g} \xrightarrow{\; \rho \;} \Omega^2(X) \otimes_{\mathbb{R}} End_{\mathbb{C}}(V) \xhookrightarrow{\;\;\;} \Omega^{2\bullet}(X) \otimes_{\mathbb{R}} End_{\mathbb{C}}(V)[t] \;\simeq\; Mat_{n \times n} \Big( \mathbb{C} \otimes_{\mathbb{R}} \Omega^{2}(X) \Big) \,.$

#### The formulas

##### Chern forms

The total Chern form $c(\nabla)$ is the determinant of the sum of the unit (3) with the curvature form (4), and its component in degree $2k$, for $k \in \mathbb{N}$, is the $k$th Chern form $c_k(\nabla)$:

$c(\nabla) \;\; \coloneqq \;\; \sum_k \underset{ \mathclap{ deg = 2k } }{ \underbrace{ c_k(\nabla) } } \;\; \coloneqq \;\; det \left( I + t \frac{i F_\nabla}{2\pi} \right) \,.$

By the relation between determinant and trace, this is equal to the exponential of the trace of the logarithm of $I + \frac{i F_\nabla}{2\pi}$, this being the exponential series in the trace of the Mercator series in $\frac{i F_\nabla}{2\pi}$:

(5)\begin{aligned} c(\nabla) & \;=\; det \left( I + t \frac{i F_\nabla}{2\pi} \right) \\ & \;=\; \exp \circ tr \circ ln \left( I + \frac{i F_\nabla}{2\pi} \right) \\ & \;=\; \exp \circ tr \left( - \underset {k \in \mathbb{N}_+} {\sum} \tfrac{1}{k} \left( \frac{F_\nabla}{2\pi i} \right)^k \right) \\ & \;=\; \exp \left( \underset {k \in \mathbb{N}_+} {\sum} \tfrac{1}{k} \left( \frac { - (-i)^k } {(2\pi)^k} tr\big( F_\nabla^{\wedge_k} \big) \right) \right) \\ & \;=\; 1 \\ & \phantom{\;=\;} + \phantom{\frac{1}{1}} \left( i \tfrac{ tr\big(F_\nabla\big) }{2 \pi} + \tfrac{1}{2} \tfrac{ tr\big( (F_\nabla)^{2} \big)}{(2 \pi)^2} -i \tfrac{1}{3} \tfrac{ tr\big( (F_\nabla)^{3} \big)}{(2 \pi)^3} - \tfrac{1}{4} \tfrac{ tr\big( (F_\nabla)^{4} \big)}{(2 \pi)^4} + \cdots \right) \\ & \phantom{\;=\;} + \frac{1}{2} \left( i \tfrac{ tr\big(F_\nabla\big) }{2 \pi} + \tfrac{1}{2} \tfrac{ tr\big( (F_\nabla)^{2} \big)}{(2 \pi)^2} -i \tfrac{1}{3} \tfrac{ tr\big( (F_\nabla)^{3} \big)}{(2 \pi)^3} - \tfrac{1}{4} \tfrac{ tr\big( (F_\nabla)^{4} \big)}{(2 \pi)^4} + \cdots \right)^2 \\ & \phantom{\;=\;} + \frac{1}{6} \left( i \tfrac{ tr\big(F_\nabla\big) }{2 \pi} + \tfrac{1}{2} \tfrac{ tr\big( (F_\nabla)^{2} \big)}{(2 \pi)^2} -i \tfrac{1}{3} \tfrac{ tr\big( (F_\nabla)^{3} \big)}{(2 \pi)^3} - \tfrac{1}{4} \tfrac{ tr\big( (F_\nabla)^{4} \big)}{(2 \pi)^4} + \cdots \right)^3 \\ & \phantom{\;=\;} + \frac{1}{24} \left( i \tfrac{ tr\big(F_\nabla\big) }{2 \pi} + \tfrac{1}{2} \tfrac{ tr\big( (F_\nabla)^{2} \big)}{(2 \pi)^2} -i \tfrac{1}{3} \tfrac{ tr\big( (F_\nabla)^{3} \big)}{(2 \pi)^3} - \tfrac{1}{4} \tfrac{ tr\big( (F_\nabla)^{4} \big)}{(2 \pi)^4} + \cdots \right)^4 \\ & \phantom{\;=\;} + \cdots \\ & \;=\; 1 \\ & \phantom{\;=\;} + i \frac { tr\big(F_\nabla\big) } { 2 \pi } \\ & \phantom{\;=\;} + \tfrac{1}{2} \frac { tr\big( (F_\nabla)^2 \big) } { (2 \pi)^2 } + \frac{1}{2} \left( i \frac { tr\big( F_\nabla \big) } { 2\pi } \right)^2 \\ & \phantom{\;=\;} - i \tfrac{1}{3} \frac { tr\big( (F_\nabla)^3 \big) } { (2 \pi)^3 } + \frac{1}{2} \left( 2 \left( i \frac { tr\big( F_\nabla \big) } { 2 \pi } \right) \left( \tfrac{1}{2} \frac { tr\big( (F_\nabla)^2 \big) } { (2 \pi)^2 } \right) \right) + \frac{1}{6} \left( \left( i \frac { tr\big(F_\nabla\big) } { 2\pi } \right)^3 \right) \\ & \phantom{\;=\;} - \tfrac{1}{4} \frac {tr\big( (F_\nabla)^4 \big)} { (2 \pi)^4 } + \frac{1}{2} \left( \tfrac{1}{2} \frac {tr\big( (F_\nabla)^2 \big)} { (2 \pi)^2 } \right)^2 + \frac{1}{24} \left( i \frac {tr\big( F_\nabla \big)} { 2\pi } \right)^4 \\ & \phantom{\;=\;} + \cdots \\ & \;=\; 1 \\ & \phantom{\;=\;} + \underset{ \color{blue} = c_1(\nabla) }{ \underbrace{ i \frac { tr\big(F_\nabla\big) } { 2 \pi } }} \\ & \phantom{\;=\;} + \underset{ \color{blue} = c_2(\nabla) }{ \underbrace{ \frac {\tr\big( (F_\nabla)^2 \big) - \big( tr(F_\nabla) \big)^2 } { 8 \pi^2 } }} \\ & \phantom{\;=\;} + \underset{ \color{blue} = c_3(\nabla) }{ \underbrace{ i \frac { - 2 \cdot tr\big( (F_\nabla)^3 \big) + 3 \cdot tr(F_\nabla) \cdot tr\big( (F_\nabla)^2 \big) - \big( tr(F_\nabla ) \big)^3 } {48 \pi^3} }} \\ & \phantom{\;=\;} + \underset{ \color{blue} = c_4(\nabla) }{ \underbrace{ \frac { -6 \cdot tr\big( (F_\nabla)^4 \big) + 3 \cdot tr\big( (F_\nabla)^2 \big)^2 + \big( tr(F_\nabla) \big)^4 } {384 \pi^4} }} \\ & \phantom{\;=\;} + \cdots \end{aligned}
##### Pontrjagin forms

Setting $tr(F_\nabla) = 0$ in these expressions (5) yields the total Pontrjagin form $p(\nabla)$ with degree=$4k$-components the Pontrjagin forms $p_{k}(\nabla)$:

\begin{aligned} p(\nabla) & \;\coloneqq\; \underset{k \in \mathbb{N}}{\sum} \underset{ deg = 4k }{ \underbrace{ (-1)^{k} p_{k}(\nabla) } } \\ & \;=\; \underset{k \in \mathbb{N}}{\sum} \underset{ deg = 4k }{ \underbrace{ c_{2k}(\nabla) } } \\ & \;=\; 1 \\ & \phantom{\;=\;} + \underset{ \color{blue} = - p_1(\nabla) }{ \underbrace{ \frac {\tr\big( (F_\nabla)^2 \big) } { 8 \pi^2 } }} \\ & \phantom{\;=\;} + \underset{ \color{blue} = p_2(\nabla) }{ \underbrace{ \frac { - 2 \cdot tr\big( (F_\nabla)^4 \big) + tr\big( (F_\nabla)^2 \big)^2 } {128 \pi^4} }} \\ \phantom{\;=\;} + \cdots \end{aligned}

Hence the first couple of Pontrjagin forms are

\begin{aligned} p_1(\nabla) & \;=\; - \frac {\tr\big( (F_\nabla)^2 \big) } { 8 \pi^2 } \\ p_2(\nabla) & \;=\; \frac { tr\big( (F_\nabla)^2 \big)^2 - 2 \cdot tr\big( (F_\nabla)^4 \big) } {128 \pi^4} \,. \end{aligned}

##### Euler forms

For $n = 2k$ and with the curvature form again regarded as a 2-form valued $(2k) \times (2k)$-square matrix

$F_{\nabla} \;=\; \big( (F_{\nabla})^a{}_b \big)_{1 \leq a,b, \leq 2k}$

the Euler form is its Pfaffian of this matrix, hence the following sum over permutations $\sigma \in Sym(2k)$ with summands signed by the the signature $sgn(\sigma) \in \{\pm 1\}$:

$\chi_{2k}(\nabla) \;=\; \frac {(-1)^k} { (4 \pi)^k \cdot k! } \underset{\sigma}{\sum} sgn(\sigma) \cdot (F_{\nabla})_{\sigma(1)\sigma(2)} \wedge (F_{\nabla})_{\sigma(3)\sigma(4)} \wedge \cdots \wedge (F_{\nabla})_{\sigma(2k-1)\sigma(2k)} \,.$

The first of these is, using the Einstein summation convention and the Levi-Civita symbol:

$\chi_4(\nabla) \;=\; \frac { \epsilon^{ a b c d} (F_{\nabla})_{a b} \wedge (F_\nabla)_{c d} } {32 \pi^2}$

## Trivializations and structures

The twisted differential c-structures corresponding to Pontryagin class include

## References

### General

The original definition is in

• Л. С. Понтрягин, Характеристические циклы многообразий, ДАН, XXXV, № 2 (1942), 35–39.

English translation: Characteristic Cycles of Manifolds. L. S. Pontryagin Selected Works. Volume 1. Selected Research Papers. Edited by R. V. Gamkrelidze. CRC Press, 1986. 283–287. doi.

• Л. С. Понтрягин, Характеристические циклы дифференцируемых многообразий, Матем. сб., 21(63):2 (1947), 233–284. MathNet.Ru PDF.

English translation by A. A. Brown: Lev Pontrjagin, Characteristic cycles on differentiable manifolds, Mat. Sbornik N. S. 21(63) (1947), 233-284; A.M.S. Translation 32 (1950). PDF. English translation by P. S. V. Naidu: Characteristic Cycles of Differentiable Manifolds. L. S. Pontryagin Selected Works. Volume 1. Selected Research Papers. Edited by R. V. Gamkrelidze. CRC Press, 1986. 375–433. doi.

Early accounts:

Classical textbook references are

With an eye towards mathematical physics: