Contents

# Contents

## Overview

Schanuel’s lemma is basic lemma in homological algebra, useful in the study of projective resolutions.

## Statement

Let $R$ be a commutative ring.

Given two short exact sequences of $R$-modules,

$0 \rightarrow P_0 \rightarrow P_1 \rightarrow M \rightarrow 0$
$0 \rightarrow P_0' \rightarrow P_1' \rightarrow M \rightarrow 0$

with $P_0,P_1,P_0',P_1'$ projective, there is an isomorphism of the direct sums

$P_0 \oplus P_1' \;\cong\; P_0'\oplus P_1 \,.$

## Proof

Observe the following commutative diagram

$\array{ && && 0 && 0 && \\ && && \downarrow && \downarrow && \\ & & & & P_0' &\to& P_0'&\to& 0 \\ && && \downarrow && \downarrow && \\ 0 & \to & P_0 &\to& Q &\to& P_1' &\to& 0 \\ && \downarrow && \downarrow && \downarrow && \\ 0 & \to & P_0 &\to& P_1 &\to& M &\to& 0 \\ && && \downarrow && \downarrow && \\ && && 0 && 0 && }$

where the square $Q-P_1'-M-P_1$ is cartesian and the morphisms $P_0\to Q$ and $P_0'\to Q$ are obtained by the universal property of cartesian square. These morphisms are then necessarily monic and the rows and columns are also exact at $Q$. Thus rows and columns of the diagram are exact. Now, by the projectivity of $P_1'$ and $P_1$ the upper and the left short exact sequences split, hence $P_0\oplus P_1' = Q = P_0'\oplus P_1$.

## Literature

Textbook accounts:

It is Proposition 2.8.26 in

• Louis Rowen, Ring theory, student edition.

See also

category: algebra

Last revised on August 22, 2022 at 20:26:48. See the history of this page for a list of all contributions to it.