nLab
anti-dual linear space
Contents
Context
Linear algebra
linear algebra , higher linear algebra
Ingredients
Basic concepts
ring , A-∞ ring
commutative ring , E-∞ ring
module , ∞-module , (∞,n)-module
field , ∞-field
vector space , 2-vector space
rational vector space
real vector space
complex vector space
topological vector space
linear basis ,
orthogonal basis , orthonormal basis
linear map , antilinear map
matrix (square , invertible , diagonal , hermitian , symmetric , …)
general linear group , matrix group
eigenspace , eigenvalue
inner product , Hermitian form
Gram-Schmidt process
Hilbert space
Theorems
(…)
Complex geometry
Contents
Idea
If the ground ring (ground field ) is equipped with a star structure (an anti-involution , such as complex conjugation in the complex numbers), then the operation of forming dual linear spaces may be “twisted” by this involution to yield a notion of “anti-dual” spaces. These relate to Hermitian forms as ordinary dual spaces relate to ordinary inner products .
Definition
Let 𝕂 \mathbb{K} be a star-ring , hence a unital ring (often a field , whence our notation, and here often the complex numbers ) equipped with an anti-involution (for instance complex conjugation ):
( − ) ¯ : 𝕂 → 𝕂
\overline{(-)} \,\colon\, \mathbb{K} \to \mathbb{K}
x ⋅ y ¯ = y ¯ ⋅ x ¯ .
\overline{x \cdot y}
\,=\,
\overline{y} \cdot \overline{x}
\,.
Consider a 𝕂 \mathbb{K} -module 𝒱 ∈ 𝕂 Mod \mathscr{V} \,\in\, \mathbb{K}Mod (say right modules for possibly non-commutative 𝕂 \mathbb{K} , but being just 𝕂 \mathbb{K} -vector spaces if 𝕂 \mathbb{K} is a field ).
Definition
The anti-dual space 𝒱 * ¯ \overline{\mathscr{V}^\ast} of 𝒱 \mathscr{V} is the space of anti-linear maps to the ground ring (ground field ):
𝒱 * ¯ ≔ { ϕ : 𝒱 → 𝕂 | ∀ v , v ′ ∈ 𝒱 ϕ ( v + v ′ ) = ϕ ( v ) + ϕ ( v ′ ) , ∀ v ∈ 𝒱 λ ∈ 𝕂 ϕ ( v ⋅ λ ) = λ ¯ ⋅ v }
\overline{\mathscr{V}^\ast}
\;\coloneqq\;
\Big\{
\phi \,\colon\,
\mathscr{V} \to \mathbb{K}
\,\Big\vert\,
\underset{v, v' \in \mathscr{V}}{\forall}
\,
\phi(v + v') = \phi(v) + \phi(v')
,\;
\underset{
{ v \in \mathscr{V} }
\atop
{ \lambda \in \mathbb{K} }
}{\forall}
\,
\phi(v \cdot \lambda) \,=\, \overline{\lambda} \cdot v
\Big\}
equipped itself with the structure of a (right) module by
ϕ ∈ 𝒱 * ¯ , λ ∈ 𝕂 ⊢ ( ϕ ⋅ λ ) ( c ) = ϕ ( v ) ⋅ λ .
\phi \in \overline{\mathscr{V}^\ast}
,\,
\,\lambda \in \mathbb{K}
\;\;\;
\vdash
\;\;\;
(\phi \cdot \lambda)(c)
\;=\;
\phi(v) \cdot \lambda
\,.
(eg.
Karoubi & Villamayor 1973, Ex. 1 ;
Karoubi 2010, §1 )
As the notation already indicates, an equivalent definition is:
Definition
The anti-dual 𝒱 * ¯ \overline{\mathscr{V}^\ast} has as underlying abelian group the ordinary linear dual 𝒱 * \mathscr{V}^\ast but equipped with its anti-linear structure, namely with the (right) module action twisted by the involution as:
ϕ ∈ Hom 𝕂 ( 𝒱 , 𝕂 ) ⊢ ∀ v ∈ 𝒱 ( ϕ ⋅ λ ) ( v ) = λ ¯ ⋅ ϕ ( v ) .
\phi \,\in\, Hom_{\mathbb{K}}(\mathscr{V}, \mathbb{K})
\;\;\;
\vdash
\;\;\;
\underset{v \in \mathscr{V}}{\forall}
\,
(\phi \cdot \lambda)(v)
\;=\;
\overline{\lambda} \cdot \phi(v)
\,.
(eg.
Mishchenko 1976 §1.1 ).
An isomorphism between the two definitions
𝒱 * ⟶ 𝒱 * ϕ ↦ ϕ ¯
\array{
\mathscr{V}^\ast
&\longrightarrow&
\mathscr{V}^\ast
\\
\phi &\mapsto& \overline{\phi}
}
is established by postcomposing linear forms with the star-involution
ϕ ¯ : v ↦ ϕ ( v ) ¯
\overline{\phi}
\,\colon\,
v \,\mapsto\, \overline{\phi(v)}
which respects the above (right) 𝕂 \mathbb{K} -actions due to
( v ↦ ϕ ( v ) ⋅ λ ) ↦ ( v ↦ ϕ ( v ) ⋅ λ ¯ ) = ( v ↦ λ ¯ ⋅ ϕ ( v ) ¯ ) .
\array{
\big(
v \,\mapsto\,
\phi(v)\cdot \lambda
\big)
&\mapsto&
\big(
v
\,\mapsto\,
\overline{\phi(v) \cdot \lambda}
\big)
\\
& = &
\big(
v
\,\mapsto\,
\overline{\lambda} \cdot \overline{\phi(v)}
\big)
\mathrlap{\,.}
}
References
Discussion in the context of Hermitian K-theory :
Max Karoubi , Orlando Villamayor , Ex. 1 in: K-théorie algébrique et K-théorie topologique II , Math. Scand. 32 (1973) 57-86 [jstor:24490565 ]
Alexandr S. Mishchenko , §1.1 (pp. 76) in: Hermitian K-Theory. The Theory of characteristic classes and methods of functional analysis , Uspeki Mat. Nauk 31 2 (1976) 69-134, Russ. Math. Surv. 31 71 (1976) [doi:10.1070/RM1976v031n02ABEH001478 , pdf ]
Max Karoubi , §1 in: Le théorème de périodicité en K-théorie hermitienne , Quanta of Maths 1 , AMS and Clay Math Institute Publications (2010) [arXiv:0810.4707 ]
See also:
Last revised on October 25, 2023 at 08:20:08.
See the history of this page for a list of all contributions to it.