An abelian group (named after Niels Henrik Abel) is a group $A$ where the multiplication satisfies the commutative law: for all elements $x, y\in A$ we have
The category with abelian groups as objects and group homomorphisms as morphisms is called Ab.
Every abelian group has the canonical structure of a module over the commutative ring $\mathbf{Z}$. That is, Ab = $\mathbf{Z}$-Mod.
From the nPOV, just as a group $G$ may be thought of as a (pointed) groupoid $\mathbf{B}G$ with a single object – as discussed at delooping – an abelian group $A$ may be understood as a (pointed) 2-groupoid $\mathbf{B}^2 A$ with a single object and a single morphism: the delooping of the delooping of $A$.
The exchange law for the composition of 2-morphisms in a 2-category forces the product on the $a \in A$ here to be commutative. This reasoning is known as the Eckmann-Hilton argument and is the same as the reasoning that finds that the second homotopy group of a space has to be abelian.
So the identitfication of abelian groups with one-object, one-morphism 2-groupoids may also be thought of as an identification with 2-truncated and 2-connected homotopy types.
A monoid in Ab with its standard monoidal category structure, equivalently a (pointed) Ab-enriched category with a single object, is a ring.
Generalizations of the notion of abelian group in higher category theory include
notably abelian simplicial groups
and spectra.
An abelian group may also be seen as a discrete compact closed category.
Last revised on May 31, 2021 at 21:24:56. See the history of this page for a list of all contributions to it.