This entry is about base change of slice categories. For base change in enriched category theory see at change of enriching category.
For a morphism in a category with pullbacks, there is an induced functor
of over-categories. This is the base change morphism. If is a topos, then this refines to an essential geometric morphism
More generally, such a triple adjunction holds whenever is locally cartesian closed, and indeed this characterises locally cartesian closed categories. The dual concept is cobase change.
For a morphism in a category with pullbacks, there is an induced functor
of over-categories. It is on objects given by pullback/fiber product along
On morphisms, it follows from the universal property of pullback
by observing that this square commutes
The concept of base change generalises from this case to other fibred categories.
For a topos (or (∞,1)-topos, etc.) a morphism in , then base change induces an essential geometric morphism between over-toposes/over-(∞,1)-toposes
where is given by postcomposition with and by pullback along .
That we have adjoint functors/adjoint (∞,1)-functors follows directly from the universal property of the pullback. The fact that has a further right adjoint is due to the fact that it preserves all small colimits/(∞,1)-colimits by the fact that in a topos we have universal colimits and then by the adjoint functor theorem/adjoint (∞,1)-functor theorem.
The (co-)monads induced by the adjoint triple in prop. have special names in some contexts:
is also called the function monad (or “reader monad”, see at monad (in computer science)).
is also called the “writer comonad” (in computer science)
in modal type theory is necessity while is possibility.
Here is a cartesian closed functor, hence base change of toposes constitutes a cartesian Wirthmüller context.
See at cartesian closed functor for the proof.
is a logical functor. Hence is also an atomic geometric morphism.
This appears for instance as (MacLaneMoerdijk, theorem IV.7.2).
By prop. is a right adjoint and hence preserves all limits, in particular finite limits.
Notice that the subobject classifier of an over topos is . This product is preserved by the pullback by which acts, hence preserves the subobject classifier.
To show that is logical it therefore remains to show that it also preserves exponential objects. (…)
A (necessarily essential and atomic) geometric morphism of the form is called the base change geometric morphism along .
The right adjoint is also called the dependent product relative to .
The left adjoint is also called the dependent sum relative to .
In the case is the terminal object, the base change geometric morphism is also called an etale geometric morphism. See there for more details
If is a locally cartesian closed category then for every morphism in the inverse image of the base change is a cartesian closed functor.
See at cartesian closed functor – Examples for a proof.
For an (∞,1)-topos and an group object in (an ∞-group), then the slice (∞,1)-topos over its delooping may be identified with the (∞,1)-category of -∞-actions (see there for more):
Under this identification, then left and right base change long a morphism of the form (corresponding to an ∞-group homomorphism ) corresponds to forming induced representations and coinduced representations, respectively.
As the special case of the above for the trivial group we obtain the following:
Let be any (∞,1)-topos and let be a group object in (an ∞-group). Then the base change along the canonical point inclusion
into the delooping of takes the following form:
There is a pair of adjoint ∞-functors of the form
where
denotes the operation of taking the homotopy fiber of a map to over the canonical basepoint;
denotes the internal hom in ;
denotes the homotopy quotient by the conjugation ∞-action for equipped with its canonical ∞-action by left multiplication and the argument regarded as equipped with its trivial --action
(for then this is the cyclic loop space construction).
Hence for
a coefficient object, such as for some differential generalized cohomology theory
then there is a natural equivalence
given by
The statement that follows immediately by the definitions. What we need to see is that the dependent product along is given as claimed.
To that end, first observe that the conjugation action on is the internal hom in the (∞,1)-category of -∞-actions . Under the equivalence of (∞,1)-categories
(from NSS 12) then with its canonical ∞-action is and with the trivial action is .
Hence
So far this is the very definition of what is to mean in the first place.
But now since the slice (∞,1)-topos is itself cartesian closed, via
it is immediate that there is the following sequence of natural equivalences
Here denotes the terminal morphism and denotes the base change along it.
See also at double dimensional reduction for more on this.
More generally:
Let be an (∞,1)-topos and an ∞-group.
Let moreover be an object equipped with a -∞-action , equivalently (by the discussion there) a homotopy fiber sequence of the form
Then
pullback along is the operation that assigns to a morphism the -fiber ∞-bundle which is associated via to the -principal ∞-bundle classified by :
the right base change along is given on objects of the form by
The first statement is NSS 12, prop. 4.6.
The second statement follows as in the proof of prop. : Let
be any object, then there is the following sequence of natural equivalences
where again
(symmetric powers)
Let
be the symmetric group on elements, and
the -element set (h-set) equipped with the canonical -action. Then prop. says that right base change of any along
is equivalently the th symmetric power of
base change
Base change geometric morphisms may be interpreted in terms of fiber integration. See integral transforms on sheaves for more on this.
Notions of pullback:
pullback, fiber product (limit over a cospan)
lax pullback, comma object (lax limit over a cospan)
(∞,1)-pullback, homotopy pullback, ((∞,1)-limit over a cospan)
A general discussion that applies (also) to enriched categories and internal categories is in
Discussion in the context of topos theory is around example A.4.1.2 of
and around theorem IV.7.2 in
Discussion in the context of (infinity,1)-topos theory is in section 6.3.5 of
See also
Last revised on July 12, 2022 at 08:10:36. See the history of this page for a list of all contributions to it.