# nLab class object

### Context

#### 2-Category Theory

higher category theory

## 1-categorical presentations

#### $(\infty,1)$-Category theory

(∞,1)-category theory

Background

Basic concepts

Universal constructions

Local presentation

Theorems

Extra stuff, structure, properties

Models

# Contents

## Idea

The internalization of the notion of class inside of any (2,1)-category.

Might be better to define this inside of an (infinity,1)-category so that it admits models inside of homotopy type theory as embeddings $m:C \hookrightarrow \mathrm{Set}_U$, but I do not know how to do so.

## Definition

Let $\mathcal{C}$ be an (2,1)-category with a terminal object, interval object, finite (2,1)-pullbacks, and a $\kappa$-small discrete object classifier $\mathrm{Set}_\kappa \in \mathrm{Ob}(\mathcal{C})$ for cardinal number $\kappa$.

An internal set $A$ in $\mathcal{C}$ is a morphism $A:\mathrm{Hom}(1, \mathrm{Set}_\kappa)$ from the terminal object $1 \in \mathrm{Ob}(\mathcal{C})$ to $\mathrm{Set}_\kappa$.

A class object relative to $\mathrm{Set}_\kappa$ in $\mathcal{C}$ is an object $C \in \mathrm{Ob}(\mathcal{C})$ with a monomorphism $m:C \hookrightarrow \mathrm{Set}_\kappa$.

## Category of class objects

Given a (2,1)-category $\mathcal{C}$ with a terminal object, interval object, finite (2,1)-pullbacks, and a $\kappa$-small discrete object classifier $\mathrm{Set}_\kappa \in \mathrm{Ob}(\mathcal{C})$ for cardinal number $\kappa$, one could define the (2,1)-category of class objects $\mathrm{Mono}(\mathrm{Set}_\kappa)$ as the category of monomorphisms into the $\kappa$-small discrete object classifier, whose morphisms preserve the monomorphism into $\mathrm{Set}_\kappa$: for every object $A \in \mathrm{Mono}(\mathrm{Set}_\kappa)$ with monomorphism $a:\mathrm{Hom}(A,\mathrm{Set}_\kappa)$ and $B \in \mathrm{Mono}(\mathrm{Set}_\kappa)$ with monomorphism $b:\mathrm{Hom}(B,\mathrm{Set}_\kappa)$ and morphism $f:\mathrm{Hom}(A, B)$, there is a natural isomorphism $i(a, b, f):\mathrm{id}_{\mathrm{Set}_\kappa} \circ a \cong b \circ f$.

$\array{& A & \overset{a}\hookrightarrow & \mathrm{Set}_\kappa & \\ f & \downarrow & \cong\swArrow &\downarrow & \mathrm{id}_{\mathrm{Set}_\kappa}\\ &B & \underset{b}\hookrightarrow& \mathrm{Set}_\kappa & \\ }$