nLab class object

Redirected from "monadic".

Context

2-Category Theory

higher category theory

Basic concepts

Basic theorems

Applications

Models

Morphisms

Functors

Universal constructions

Extra properties and structure

1-categorical presentations

(,1)(\infty,1)-Category theory

Universes

Contents

Idea

The internalization of the notion of class inside of any (2,1)-category.

Might be better to define this inside of an (infinity,1)-category so that it admits models inside of homotopy type theory as embeddings m:CSet Um:C \hookrightarrow \mathrm{Set}_U, but I do not know how to do so.

Definition

Let 𝒞\mathcal{C} be an (2,1)-category with a terminal object, interval object, finite (2,1)-pullbacks, and a κ\kappa-small discrete object classifier Set κOb(𝒞)\mathrm{Set}_\kappa \in \mathrm{Ob}(\mathcal{C}) for cardinal number κ\kappa.

An internal set AA in 𝒞\mathcal{C} is a morphism A:Hom(1,Set κ)A:\mathrm{Hom}(1, \mathrm{Set}_\kappa) from the terminal object 1Ob(𝒞)1 \in \mathrm{Ob}(\mathcal{C}) to Set κ\mathrm{Set}_\kappa.

A class object relative to Set κ\mathrm{Set}_\kappa in 𝒞\mathcal{C} is an object COb(𝒞)C \in \mathrm{Ob}(\mathcal{C}) with a monomorphism m:CSet κm:C \hookrightarrow \mathrm{Set}_\kappa.

Category of class objects

Given a (2,1)-category 𝒞\mathcal{C} with a terminal object, interval object, finite (2,1)-pullbacks, and a κ\kappa-small discrete object classifier Set κOb(𝒞)\mathrm{Set}_\kappa \in \mathrm{Ob}(\mathcal{C}) for cardinal number κ\kappa, one could define the (2,1)-category of class objects Mono(Set κ)\mathrm{Mono}(\mathrm{Set}_\kappa) as the category of monomorphisms into the κ\kappa-small discrete object classifier, whose morphisms preserve the monomorphism into Set κ\mathrm{Set}_\kappa: for every object AMono(Set κ)A \in \mathrm{Mono}(\mathrm{Set}_\kappa) with monomorphism a:Hom(A,Set κ)a:\mathrm{Hom}(A,\mathrm{Set}_\kappa) and BMono(Set κ)B \in \mathrm{Mono}(\mathrm{Set}_\kappa) with monomorphism b:Hom(B,Set κ)b:\mathrm{Hom}(B,\mathrm{Set}_\kappa) and morphism f:Hom(A,B)f:\mathrm{Hom}(A, B), there is a natural isomorphism i(a,b,f):id Set κabfi(a, b, f):\mathrm{id}_{\mathrm{Set}_\kappa} \circ a \cong b \circ f.

A a Set κ f id Set κ B b Set κ \array{& A & \overset{a}\hookrightarrow & \mathrm{Set}_\kappa & \\ f & \downarrow & \cong\swArrow &\downarrow & \mathrm{id}_{\mathrm{Set}_\kappa}\\ &B & \underset{b}\hookrightarrow& \mathrm{Set}_\kappa & \\ }

 See also

Last revised on November 19, 2022 at 05:30:32. See the history of this page for a list of all contributions to it.