nLab complex projective 3-space

Contents

Contents

Idea

Complex projective 3-space P 3\mathbb{C}P^3 is the complex projective space P n\mathbb{C}P^n for n=3n = 3.

Properties

Coset space realization

Complex projective space has the following coset space-realizations:

Calabi-Penrose fibration

twistor spaceCalabi-Penrose fibration

References

Complex projective 3-space is conceived in the guise as the twistor space of 4d Minkowski spacetime in

Discussion of P 3\mathbb{C}P^3 as the domain of the twistor fibration and with an eye towards Yang-Mills theory:

See also

  • A. L. Onishchik, On compact Lie groups transitive on certain manifolds, Dokl. Akad. Nauk SSSR, 135:3 (1960), 531–534 (mathnet:dan24279)

  • Ahmad Zandi, Minimal immersion of surfaces in quaternionic projective space, Tsukuba Journal of Mathematics Vol. 12, No. 2 (1988), pp. 423-440 (18 pages) (jstor:43686661)

  • Kouyemon Iriye, Manifolds which have two projective space bundle structures from the homotopical point of view, J. Math. Soc. Japan Volume 42, Number 4 (1990), 639-658 (euclid:jmsj/1227108441)

  • V. Gorbatsevich, A. L. Onishchik, Compact homogeneous spaces, Chapter 5 in: Lie Groups and Lie Algebras II: Lie Transformation groups, Encyclopaedia of Mathematical Sciences, vol 20. Springer, Spinger 1993 (doi:10.1007/978-3-642-57999-8_11)

  • Jean-Baptiste Butruille, Homogeneous nearly Kähler manifolds, in: Vicente Cortés (ed) Handbook of Pseudo-Riemannian Geometry and Supersymmetry, pp 399–423 (arXiv:math/0612655, doi:10.4171/079-1/11)

On the KO-theory of P 3\mathbb{C}P^3:

  • Michael Atiyah, E. Rees, Vector bundles on projective 3-space, Invent. Math. 35, 131–153 (1976) (pdf)

On symmetries of manifolds of the homotopy type of P 3\mathbb{C}P^3:

  • Mark Hughes, Symmetries of Homotopy Complex Projective Three Spaces, Transactions of the American Mathematical Society Vol. 337, No. 1 (May, 1993), pp. 291-304 (doi:10.2307/2154323)

On toric symmetries of P 3\mathbb{C}P^3:

  • Dagan Karp, Dhruv Ranganathan, Paul Riggins, Ursula Whitcher, Toric symmetry of P 3\mathbb{C}P^3, Advances in Theoretical and Mathematical Physics, Vol. 16, No. 4, 2012 (arXiv:1109.5157)

Last revised on July 19, 2021 at 18:02:18. See the history of this page for a list of all contributions to it.